DOI QR코드

DOI QR Code

Genetic Variation of Korean Fir Sub-Populations in Mt. Jiri for the Restoration of Genetic Diversity

유전다양성 복원을 위한 지리산 구상나무 아집단의 유전변이

  • Ahn, Ji Young (Division of Forest Genetic Resources, National Institute of Forest Science) ;
  • Lim, Hyo-In (Division of Research Planing and Coordination, National Institute of Forest Science) ;
  • Ha, Hyun-Woo (Division of Forest Genetic Resources, National Institute of Forest Science) ;
  • Han, Jingyu (Division of Research Planing and Coordination, National Institute of Forest Science) ;
  • Han, Sim-Hee (Division of Forest Genetic Resources, National Institute of Forest Science)
  • 안지영 (국립산림과학원 산림유전자원과) ;
  • 임효인 (국립산림과학원 연구기획과) ;
  • 하현우 (국립산림과학원 산림유전자원과) ;
  • 한진규 (국립산림과학원 연구기획과) ;
  • 한심희 (국립산림과학원 산림유전자원과)
  • Received : 2017.10.13
  • Accepted : 2017.10.27
  • Published : 2017.12.31

Abstract

To provide a ecological restoration strategy considering genetic diversity of Abies koreana in Mt. Jiri, the genetic diversity and the genetic differentiation among sub-populations such as Banyabong, Byeoksoryeong, and Cheonwangbong were investigated. The average number of alleles (A) was 7.8, the average number of effective alleles ($A_e$) was 4.9, observed heterozygosity ($H_o$) was 0.578, and expected heterozygosity ($H_e$) was 0.672, respectively. The level of genetic diversity within sub-populations ($H_e=0.672$) was lower than those of both population ($H_e=0.778$) and species ($H_e=0.759$) level. However, the level of genetic diversity was high compared those of Genus Abies. Genetic differentiation was 0.014 from F-statistics ($F_{ST}$) and was 0.004 from AMOVA analysis (${\Phi}_{ST}$). There was no almost genetic differentiation among sub-populations in Mt. Jiri from bayesian clustering. Therefore, If the seeds are sampled sufficiently by selecting the parameters from three sub-populations, it is possible that we could obtain genetically appropriate materials for ecological restoration.

구상나무(Abies koreana)의 유전다양성 복원 전략 수립을 위해 지리산의 반야봉, 벽소령, 천왕봉 아집단들에 대한 유전다양성과 아집단 간 유전분화율을 추정하였다. 아집단 평균 유전다양성은 대립유전자수(A)가 7.8개, 평균 유효대립유전자수($A_e$)가 4.9개, 이형접합도 관찰치($H_o$)가 0.578, 이형접합도 기대치($H_e$)가 0.672이었다. 3개 아집단들의 평균 유전다양성($H_e=0.672$)은 지리산 집단 수준의 유전다양성($H_e=0.778$)과 구상나무 종 수준의 유전다양성($H_e=0.759$)보다 낮았으나, 전나무 속 타 수종들과 비교하면 높은 것으로 나타났다. 아집단 간 유전분화율은 F-통계분석($F_{ST}$)에서 0.014였고, AMOVA 분석(${\Phi}_{ST}$)에서 0.004로 나타났다. 베이지안 군집분석에서 지리산 내 아집단 간 유전분화가 거의 없는 것으로 나타났다. 그러므로 3개 지역으로부터 모수들을 충분히 선정하여 종자를 채취한다면, 유전적으로 다양한 복원재료를 확보할 수 있을 것으로 생각된다.

Keywords

References

  1. Awad, L., Fady, B., Khater, C., Roig, A. and Cheddadi, R. 2014. Genetic structure and diversity of the endangered fir tree of Lebanon (Abies cilicica Carr.): implications for conservation. PLoS ONE 9(2): e90086. https://doi.org/10.1371/journal.pone.0090086
  2. Bischoff, A., Steinger, T. and Muller-Scharer, H. 2010. The importance of plant provenance and genotypic diversity of seed material used for ecological restoration. Restoration Ecology 18: 338-348.
  3. Broadhurst, L. and Boshier, D. 2014. Seed provenance for restoration and management: conserving evolutionary potential and utility. pp. 27-37. In : Bozzano, M., Jalonen, R., Thomas, E., Boshier, D., Gallo, L., Stepehn, C., Bordacs, S., Smith, P. and Loo, J. (Ed.). Genetic considerations in ecosystem restoration using native tree species. Food and Agriculture Organization of the United Nations. Rome, Italy.
  4. Cremer, E., Liepelt, S., Sebastiani. F., Buonamici, A., Michalczyk, I.M., Ziegenhagen, B. and Vendramin, G.G. 2006. Identification and characterization of nuclear microsatellite loci in Abies alba Mill. Molecular Ecology Notes 6: 374-376. https://doi.org/10.1111/j.1471-8286.2005.01238.x
  5. Earl, D.A. and vonHoldt, B.M. 2012. STRUCTURE HARVETER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetic Resources 4: 359-361. https://doi.org/10.1007/s12686-011-9548-7
  6. Evanno, G., Reanaut, S. and Goudet, J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  7. Hansen, O.K., Vendramin, G.G., Sebastiani, F. and Edwards, K.J. 2005. Development of microsatellite markers in Abies nordmanniana(Stev.) Spach and cross-species amplification in the Abies genus. Molecular Ecology Notes 5: 784-787. https://doi.org/10.1111/j.1471-8286.2005.01062.x
  8. Hong, Y.P., Ahn, J.Y., Kim, Y.M., Yang, B.H. and Song, J.H. 2011. Genetic Variation of nSSR Markers in Natural Populations of Abies koreana and Abies nephrolepis in South Korea. Journal of Korean Forest Society 100(4): 577-584.
  9. Jakobsson, M. and Rosenberg, N.A. 2007. CLUMPP: a cluster matching and permutation program with label switching and multimodality in analysis of population structure. Bioinformatics 23(14): 1801-1806. https://doi.org/10.1093/bioinformatics/btm233
  10. Kim, M.S. and Lee, H.C. 2013. A study on changes and distributions of Korean Fir in sub-alpine zone. Journal of the Korean Society of Environmental Restoration Technology 16(5): 49-57.
  11. Kim, Y.S., Chang, C.S., Kim, C.S. and Gardner, M. 2011. Abies koreana. The IUCN Red List of Threatened Species 2011: e.T31244A9618913.
  12. King, G.M., Gugerli, F., Fonti, P. and Frank, D.C. 2013. Tree growth response aling an elevational gradient: climate or genetics? Oecologia 173: 1587-1600. https://doi.org/10.1007/s00442-013-2696-6
  13. Kong, W.S. 1998. The Alpine and subalpine Geoecology of the Korean Peninsula. Korean Journal of Ecology 21(4): 383-387.
  14. Koo, K.A., Park, W.K. and Kong, W.S. 2001. Dendrochronological Analysis of Abies koreana W. at Mt. Halla, Korea: Effects of Climate Change on the Growths. Korean Journal of Ecology 24(5): 281-288.
  15. Koo, K.A., Kong, W.S., Park, S.U., Lee, J.H., Kim, J.U. and Jung, H.C. 2017. Sensitivity of Korean fir (Abies koreana Wils.), a threatened climate relict species, to increasing temperature at an island subalpine area. Ecological Modelling 353: 5-16. https://doi.org/10.1016/j.ecolmodel.2017.01.018
  16. KOREA NATIONAL ARBORETUM (KNA). 2014. Forest of Korea (I) Conservation of Korean fir (Abies koreana) in a changing environment. pp. 85-86.
  17. Kwak, M.H., Hong, J.K., Park, J.H., Lee, B.Y., Suh, M.H. and Kim, C.S. 2017. Genetic assessment of Abies koreana (Pinaceae) the endangered Korean fir and conservation implications. Conservation Genetics DOI 10.1007/s10592-017-0968-0
  18. Lee, S.W., Yang, B.H., Han, S.D., Song, J.H. and Lee, J.J. 2008. Genetic variation in natural populations of Abies nephrolepis Max. in South Korea. Annual Forest Science. 65(302): 1-7. https://doi.org/10.1051/forest:2008999
  19. Lim, J.H., Woo, S.Y., Kwon, M.J., Chun, J.H. and Shin, J.H. 2006. Photosynthetic capacity and water use efficiency under different temperature regimes on healthy and declining korean fir in Mt. Halla. Journal of Korean Forestry Society. 95(6): 705-710.
  20. Mckay, J.K., Christian, C.E., Harrison, S. and Rice, K.J. 2005. How local is local? a review of practical and conceptual issues in the genetics of restoration. Restoration Ecology 13(3): 432-440. https://doi.org/10.1111/j.1526-100X.2005.00058.x
  21. Moriguchi, Y., Kang, K.S., Lee, K.Y., Lee, S.W. and Kim Y.Y. 2009. Genetic variation of Picea jezoensis populations in South Korea revealed by chloroplast, mitochondirial and nuclear DNA markers. Journal of Plant Research 122: 153-160. https://doi.org/10.1007/s10265-008-0210-8
  22. Nardin, M., Musch, B., Rousselle, Y., Guerin, V., Sanchez, L., Jean-Pierre, R., Gerber, S., Marin, S., Paques, L.E. and Philippe, R. 2015. Genetic differentiation of european larch along an altitudinal gradient in the French Alps. Annals of Forest Science DOI 10.1007/s13595-015-0483-8.
  23. National Institute of Forest Science (NIFOS). 2016. Global plan of action for the conservation, sustainable use and development of forest genetic resources. National Institute of Forest Science. Suwon, Republic of Korea. pp. 54.
  24. Nybom, H. 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in Plants. Molecular Ecology 13: 1143-1155. https://doi.org/10.1111/j.1365-294X.2004.02141.x
  25. Oosterhout, C.V., Hutchinson, W.F., Wills, P.M. and Shiply, P. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535-538. https://doi.org/10.1111/j.1471-8286.2004.00684.x
  26. Peakall, R. and Smouse, P.E. 2006. GENEALEX 6: genetic analysis in Excel. population genetic software for teaching and research. Molecular Ecology Notes 6: 288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
  27. Postolache, D., Leonarduzzi, C., Piotti, A., Spanu, I., Roig, A., fady, B., Roschanski, A., Liepelt, S. and Vendramin, G.G. 2013. Transcriptome versus genomic microsatellite markers: highly informative multiplexes for genotyping Abies alba Mill. and Congeneric Species. Plant Molecular Biology Report DOI 10.1007/s11105-013-0688-7.
  28. Potter, K.M., Frampton, J., Josserand, S.A. and Nelson, C.D. 2008. Genetic variation and population structure in Fraser fir (Abies fraseri): a microsatellite assessment of young trees. Canadian Journal of Forest Research 38: 2128-2137. https://doi.org/10.1139/X08-064
  29. Pritchard, J.K., Stephens, M. and Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959.
  30. Ritchie, A.L. and Krauss, S.L. 2012. A genetic assessment of eclolgical restoration success in Banksia attenuata. Restoration Ecology 20(4): 441-449. https://doi.org/10.1111/j.1526-100X.2011.00791.x
  31. Rosenberg, N.A. 2004. DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes 4: 137-138.
  32. Smulders, M.J.M., Cottrell, J.E., Lefevre, F., Schoot, J., Arens, P., Vosman, B., Tabbener, H.E., Grassi, F., Fossati, T., Castiglione, S., Krestufek, V., Flucj, S., Burg, K., Vornam, B., Pohl, A., Gebhardt, K., Alba, N., Agundez, D., Maestro, C., Notivol, E., Volosyanchuk, R., Pospiskova, M., Bordacs, S., Bovenschen, J., Dam, B.C., Koelewijn, H.P., Halfmaerten, D., Ivens, B., Slycken,J., Vanden Broeck, A., Storme, V. and Boerjan, W. 2008. Structure of the genetic diversity in black poplar (Populus nigra L.) populations across European river systems: Consequences for conservation and restoration. Forest Ecology and Management 255: 1388-1399. https://doi.org/10.1016/j.foreco.2007.10.063
  33. Sujii, P.S., Schwarcz, K.D., Grando, C., Silvestre, E.A., Mori, G.M., Brancalion, P.H.S. and Zucchi, M.I. 2017. Recovery of genetic diversity levels of a neotropical tree in atlantic forest restoration plantations. Biological Conservation 211: 110-116. https://doi.org/10.1016/j.biocon.2017.05.006
  34. Tang, S., Dai, W., Li, M., Zhang, Y., Geng, Y., Wang, L. and Zhong, Y. 2008. Genetic diversity of relictual and endangered plant Abies ziyuanensis (Pinaceae) revealed by AFLP and SSR markers. Genetica 133: 21-30. https://doi.org/10.1007/s10709-007-9178-x
  35. Wang, X., Zhang, Q.W., Liufu, Y.Q., Lu, Y.B., Zhan, T. and Tang, S.Q. 2014. Comparative analysis of genetic diversity and population genetic structure in Abies chensiensis and Abies fargesii inferred from microsatellite markers. Biochemical Systematics and Ecology 55: 351-357. https://doi.org/10.1016/j.bse.2014.04.008
  36. Yang, J.C., Yi, D.K., Joo, M.J. and Choi, K. 2015. Phylogeographic study of Abies koreana and Abies nephrolepis in Korea based on mitochondrial DNA. Korean Journal of Plant Taxonomy 45(3): 254-261. https://doi.org/10.11110/kjpt.2015.45.3.254