References
- I.H. Abdel-Halim Hassan, Application to differential transformation method for solving systems of dierential equations, Appl. Math. Model. 32 (2008), 2552-2559. https://doi.org/10.1016/j.apm.2007.09.025
- J. Biazar and H. Ghazvini, He's variational iteration method for solving linear and non-linear systems of ordinary differential equations, Appl. Math. Comput. 191 (2007), 287-297.
- B. Bulbul and M. Sezer, A Taylor matrix method for the solution of a two-dimensional linear hyperbolic equation, Appl. Math. Lett. 24 (2011), 1716-1720. https://doi.org/10.1016/j.aml.2011.04.026
- M. Gulsu and M. Sezer, The approximate solution of high-order linear difference equation with variable coefficients in terms of Taylor polynomials, Appl. Math. Comput. 168 (2005), 76-88.
- M. Gulsu and M. Sezer, A method for the approximate solution of the high-order linear difference equations in terms of Taylor polynomials, Int. J. Comput. Math. 82 (2005), 629-642. https://doi.org/10.1080/00207160512331331156
- M. Gulsu and M. Sezer, A Taylor polynomial approach for solving differential-difference equations, J. Comput. and Appl. Math. 186 (2006), 349-364. https://doi.org/10.1016/j.cam.2005.02.009
- M. Gulsu and M. Sezer, On the solution of Riccati equation by the Taylor matrix method, Appl. Math. Comput. 176 (2006), 414-421.
- M. Gulsu, M. Sezer and B. Tanay, A matrix method for solving high-order linear difference equations with mixed argument using hybrid legendre and taylor polynomials, J. Franklin Inst. 343 (2006), 647-659. https://doi.org/10.1016/j.jfranklin.2006.03.015
- M. Gulsu and M. Sezer, Approximations to the solution of linear Fredholm integro differential-difference equation of high order, J. Franklin Inst. 343 (2006), 720-737. https://doi.org/10.1016/j.jfranklin.2006.07.003
- N. Guzel and M. Bayram, On the numerical solution of stiff systems, Appl. Math. Comput. 170 (2005), 230-236.
- R.P. Kanwal and K.C. Liu, A Taylor expansion approach for solving integral equations, Int. J. Math. Educ. Sci. Technol. 20 (1989), 411-414. https://doi.org/10.1080/0020739890200310
- D. Kaya, A reliable method for the numerical solution of the kinetics problems, Appl. Math. Comput. 156 (2004), 261-270.
- C. Kesan, Taylor polynomial solutions of linear differential equations, Appl. Math. Comput. 142 (2003), 155-165.
- N. Kurt and M. cevik, Polynomial solution of the single degree of freedom system by Taylor matrix method, Mechanics Research Communications 35 (2008), 530-536. https://doi.org/10.1016/j.mechrescom.2008.05.001
- S. Nas, S. Yalcnbas and M. Sezer, A Taylor polynomial approach for solving high-order linear Fredholm integro-differential equations, Int. J. Math. Educ. Sci. Technol. 31 (2000), 213-225. https://doi.org/10.1080/002073900287273
- M. Sezer, Taylor polynomial solutions of Volterra integral equations, Int. J. Math. Educ. Sci. Technol. 25 (1994), 625-633. https://doi.org/10.1080/0020739940250501
- M. Sezer, A method for approximate solution of the second order linear differential equations in terms of Taylor polynomials, Int. J. Math. Educ. Sci. Technol. 27 (1996), 821-834. https://doi.org/10.1080/0020739960270606
- M. Sezer, A. Karamete and M. Gulsu, Taylor polynomial solutions of systems of linear differential equations with variable coefficients, Int. J. Comput. Math. 82 (2005), 755-764. https://doi.org/10.1080/00207160512331323336
- M. Sezer and M. Gulsu, A new polynomial approach for solving difference and Fredholm integro-difference equations with mixed argument, Appl. Math. Comput. 171 (2005), 332-344.
- M. Sezer and M. Gulsu, Polynomial solution of the most general linear Fredholm integro differential-difference equation by means of Taylor matrix method, Int. J. Complex Variables 50 (2005), 367-382.
- M. Sezer, B. Tanay and M. Gulsu, A polynomial approach for solving high-order linear complex differental equations with variable coefficients in disc, Erciyes Universitesi Fen Bilimleri Enstitusu Dergisi 25 (2009), 374-389.
- S. Yalcinbas and M. Sezer, The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials, Appl. Math. Comput. 112 (2000), 291-308.
- S. Kome, M.T. Atay, A. Eryilmaz, C. Kome and S. Piipponen, Comparative numerical solutions of stiff ordinary differential equations using Magnus series expansion method, New Trends in Mathematical Sciences 3 (2015), 35-45.
- M.T. Atay, A. Eryilmaz and S. Kome, Magnus series expansion method for solving nonhomogeneous stiff systems of ordinary differential equations, Kuwait J. Sci. 43 (2016), 25-38.