References
- Ai, D., Zhu, H. and Luo, H. (2016), "Sensitivity of embedded active PZT sensor for concrete structural impact damage detection", Constr. Build. Mater., 111, 348-357. https://doi.org/10.1016/j.conbuildmat.2016.02.094
- Akbas, S.D. (2014a), "Wave propagation analysis of edge cracked circular beams under impact force", PloS one, 9(6), e100496. https://doi.org/10.1371/journal.pone.0100496
- Akbas, S.D. (2014b), "Wave propagation analysis of edge cracked beams resting on elastic foundation", Int. J. Eng. Appl. Sci. (IJEAS), 6(1), 40-52.
- Akbas, S.D. (2016), "Wave propagation in edge cracked functionally graded beams under impact force", J. Vib. Control, 22(10), 2443-2457. https://doi.org/10.1177/1077546314547531
- Bahrami, A. and Teimourian, A. (2015), "Nonlocal scale effects on buckling, vibration and wave reflection in nanobeams via wave propagation approach", Compos. Struct., 134, 1061-1075. https://doi.org/10.1016/j.compstruct.2015.09.007
- Barbieri, E., Cammarano, A., De Rosa, S. and Franco, F. (2009), "Waveguides of a composite plate by using the spectral finite element approach", J. Vib. Control, 15, 347-367. https://doi.org/10.1177/1077546307087455
- Bently, D.E. and Hatch, C.T. (2003), Fundamentals of Rotating Machinery Diagnostics, ASME Press, New York, NY, USA.
- Bityurin, A.A. and Manzhosov, V.K. (2009), "Waves induced by the longitudinal impact of a rod against a steeped rod in contact with a rigid barrier", J. Appl. Math. Mech., 73, 162-168. https://doi.org/10.1016/j.jappmathmech.2009.04.006
- Doyle, J.F. (1997), Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms, Springer, New York, NY, USA.
- Eltaher, M.A., Khater, M.E. and Emam, S.A. (2016), "A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams", Appl. Math. Model, 40(5), 4109-4128. https://doi.org/10.1016/j.apm.2015.11.026
- Farrar, C.R. and Lieven, N.A.J. (2007), "Damage prognosis: the future of structural health monitoring", Phil. Trans. R. Soc., 365(1851), 623-632. https://doi.org/10.1098/rsta.2006.1927
- Farrar, C.R. and Worden, K. (2007), "An introduction to structural health monitoring", Phil. Trans. R. Soc., 365(1851), 303-315. https://doi.org/10.1098/rsta.2006.1928
- Feng, Q., Kong, Q. and Song, G. (2016), "Damage detection of concrete piles subject to typical damage types based on stress wave measurement using embedded smart aggregates transducers", Measurement, 88, 345-352. https://doi.org/10.1016/j.measurement.2016.01.042
- Frikha, A., Treyssede, F. and Cartraud, P. (2011), "Effect of axial load on the propagation of elastic waves in helical beams", Wave Motion, 48(1), 83-92. https://doi.org/10.1016/j.wavemoti.2010.08.001
- Gan, C., Wei, Y. and Yang, S. (2014), "Longitudinal wave propagation in a rod with variable cross-section", J. Sound Vib., 333(2), 434-445. https://doi.org/10.1016/j.jsv.2013.09.010
- Gan, C., Wei, Y. and Yang, S. (2016), "Longitudinal wave propagation in a multi-step rod with variable cross-section", J. Vib. Control, 22(3), 837-852. https://doi.org/10.1177/1077546314531806
- Gopalakrishnan, S. (2000), "A deep rod finite element for structural dynamics and wave propagation problems", Int. J. Numer. Meth. Eng., 48(5), 731-744. https://doi.org/10.1002/(SICI)1097-0207(20000620)48:5<731::AID-NME901>3.0.CO;2-#
- Gopalakrishnan, S. and Doyle, J.F. (1994), "Wave propagation in connected wave guides of varying cross section", J. Sound Vib., 175(3), 347-363. https://doi.org/10.1006/jsvi.1994.1333
- Gopalakrishnan, S. and Doyle, J.F. (1995), "Spectral super-elements for wave propagation in structures with local non uniformities", Comput. Method Appl. M., 121(1-4), 77-90. https://doi.org/10.1016/0045-7825(94)00686-H
- Guo, S. and Yang, S. (2012), "Wave motions in non-uniform one-dimensional waveguides", J. Vib. Control, 18(1), 92-100. https://doi.org/10.1177/1077546311399948
- He, W.Y. and Zhu, S. (2015), "Adaptive-scale damage detection strategy for plate structures based on wavelet finite element model", Struct. Eng. Mech., Int. J., 54(2), 239-256. https://doi.org/10.12989/sem.2015.54.2.239
- He, W.Y., Zhu, S. and Ren, W.X. (2014), "A wavelet finite element-based adaptive-scale damage detection strategy", Smart Struct. Syst., Int. J., 14(3), 285-305. https://doi.org/10.12989/sss.2014.14.3.285
- Hibbitt, H., Karlsson, B. and Sorensen, P. (2011), "Abaqus analysis user's manual version 6.10", Dassault Systemes Simulia Corp.: Providence, RI, USA.
- Kisa, M. and Gurel, M.A. (2007), "Free vibration analysis of uniform and stepped cracked beams with circular cross sections", Int. J. Eng. Sci., 45(2), 364-380. https://doi.org/10.1016/j.ijengsci.2007.03.014
- Kocaturk, T., Eskin, A. and Akbas, S.D. (2011), "Wave propagation in a piecewise homogenous cantilever beam under impact force", Int. J. Phys. Sci., 6(16), 3867-3874.
- Krawczuk, M. (2002), "Application of spectral beam finite element with a crack and iterative search technique for damage detection", Finite Elem. Anal. Des., 38(6), 537-548. https://doi.org/10.1016/S0168-874X(01)00084-1
- Krawczuk, M., Palacz, M. and Ostachowicz, W. (2003), "The dynamic analysis of a cracked Timoshenko beam by the spectral element method", J. Sound Vib., 264(5), 1139-1153. https://doi.org/10.1016/S0022-460X(02)01387-1
- Krawczuk, M., Grabowska, J. and Palacz, M. (2006), "Longitudinal wave propagation. Part I-Comparison of rod theories", J. Sound Vib., 295(3), 461-478. https://doi.org/10.1016/j.jsv.2005.12.048
- Lakshmanan, N., Raghuprasad, B.K., Gopalakrishnan, N., Sathishkumar, K. and Murthy, S.G.N. (2010), "Detection of contiguous and distributed damage through contours of equal frequency change", J. Sound Vib., 329(9), 1310-1331. https://doi.org/10.1016/j.jsv.2009.11.006
- Lee, S.K., Mace, B.R. and Brennan, M.J. (2007), "Wave propagation, reflection and transmission in nonuniform one-dimensional waveguides", J. Sound Vib., 304(1), 31-49. https://doi.org/10.1016/j.jsv.2007.01.039
- Liu, K., Li, X. and Sun X. (1997), "A numerical method for axisymmetric wave propagation problem of anisotropic solids", Comput. Methods Appl. Mech. Engrg., 145(1-2), 109-116. https://doi.org/10.1016/S0045-7825(96)01204-2
- Mahapatra, D.R. and Gopalakrishnan, S. (2003), "A spectral finite element model for analysis of axial-flexural-shear coupled wave propagation in laminated composite beams", Comput. Struct., 59(1), 67-88. https://doi.org/10.1016/S0263-8223(02)00228-3
- Ostachowicz, W. (2008), "Damage detection of structures using spectral finite element method", Comput. Struct., 86(3), 454-462. https://doi.org/10.1016/j.compstruc.2007.02.004
- Ostachowicz, W., Krawczuk, M., Zak, A. and Kudela, P. (2006), "Damage detection in elements of structures by the elastic wave propagation method", Compt. Asst. Mech. Eng. Sci., 13, 109-124.
- Palacz, M. and Krawczuk, M. (2002), "Analysis of longitudinal wave propagation in a cracked rod by the spectral element method", Comput. Struct., 80(24), 1809-1816. https://doi.org/10.1016/S0045-7949(02)00219-5
- Palacz, M., Krawczuk, M. and Ostachowicz, W. (2005a), "The spectral finite element model for analysis of flexural-shear coupled wave propagation: Part 1: Laminated multilayer composite beam", Compos. Struct., 68(1), 37-44. https://doi.org/10.1016/j.compstruct.2004.02.012
- Palacz, M., Krawczuk, M. and Ostachowicz, W. (2005b), "The spectral finite element model for analysis of flexural-shear coupled wave propagation. Part 2: Delaminated multilayer composite beam", Compos. Struct., 68(1), 45-51. https://doi.org/10.1016/j.compstruct.2004.02.013
- Rao, G.V.R., Davis, T.T., Sreekala, R., Gopalakrishnan, N., Iyer, N.R. and Lakshmanan, N. (2015), "Damage identification through wave propagation and vibration based methodology for an axial structural element", J. Vib. Eng. Tech., 3(4), 383-399.
- Saravanan, T.J. Gopalakrishnan, N. and Rao, N.P. (2015a), "Damage detection in structural element through propagating waves using radially weighted and factored RMS", Measurement, 73, 520-538. https://doi.org/10.1016/j.measurement.2015.06.015
- Saravanan, T.J., Rao, N.P. and Gopalakrishnan, N. (2015b), "Experimental and numerical investigation on longitudinal wave propagation in rod with structural discontinuity", J. Struct. Eng. (India), 42(1), 1-7.
- Saravanan, T.J., Gopalakrishnan, N. and Rao, N.P. (2016), "Detection of damage through coupled axial-flexural wave interactions in a sagged rod using the spectral finite element method", J. Vib. Control. DOI: 10.1177/1077546316630855
- Shull, P.J. (2002), Non-Destructive Evaluation Theory, Techniques, and Applications, Marcel Dekker Inc., New York, NY, USA.
- Tian, J., Li, Z. and Su, X. (2003), "Crack detection in beams by wavelet analysis of transient flexural waves", J. Sound Vib., 261(4), 715-727. https://doi.org/10.1016/S0022-460X(02)01001-5
- Worden, K. and Dulieu-Barton, J.M. (2004), "An overview of intelligent fault detection in systems and structures", Int. J. Struct. Health Monit., 3(1), 85-98. https://doi.org/10.1177/1475921704041866
- Wu, Z.J. and Li, F.M. (2014), "Spectral element method and its application in analyzing the vibration band gap properties of two-dimensional square lattices", J. Vib. Control. DOI: 10.1177/1077546314531805
- Yang, Z., Radzienski, M., Kudela, P. and Ostachowicz, W. (2016), "Two-dimensional modal curvature estimation via Fourier spectral method for damage detection", Compos. Struct., 148, 155-167. https://doi.org/10.1016/j.compstruct.2016.04.001
- Zak, A. and Krawczuk, M. (2011), "Certain numerical issues of wave propagation modelling in rods by the spectral finite element method", Finite Elem. Anal. Des., 47(9), 1036-1046. https://doi.org/10.1016/j.finel.2011.03.019
Cited by
- Critical Distance of the Seismic Waves’ Impact in Disintegration of Rock Blasting vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/5134948
- Modelling of diagnostics of the technical condition of cable lines and power supply systems vol.351, pp.None, 2017, https://doi.org/10.1051/matecconf/202135101008
- Automatic diagnostic device with measurement of distances to damages by the combined pulse-phase method vol.351, pp.None, 2017, https://doi.org/10.1051/matecconf/202135101010
- Study on Accuracy Metrics for Evaluating the Predictions of Damage Locations in Deep Piles Using Artificial Neural Networks with Acoustic Emission Data vol.11, pp.5, 2017, https://doi.org/10.3390/app11052314