References
-
B. Alspach and H. Gavlas, Cycle decompositions of
$K_n$ and$K_n$ -I. J. Combin. Theory Ser. B 81(2001), 77-99. https://doi.org/10.1006/jctb.2000.1996 - E. Billington and D. G. Hoffman, Decomposition of complete tripartite graphs into gre-garious 4-cycles. Discrete Math. 261(2003), 87-111. https://doi.org/10.1016/S0012-365X(02)00462-4
- E. Billington and D. G. Hoffman, Equipartite and almost-equipartite gregarious 4-cycle decompositions, Discrete Math. 308(2008), no. 5-6, 696714. https://doi.org/10.1016/j.disc.2007.07.056
- E. Billington, D. G. Hoffman and C. A. Rodger, Resolvable gregarious cycle decompositions of complete equipartite graphs. Discrete Math. 308(2008), no. 13, 28442853. https://doi.org/10.1016/j.disc.2006.06.047
- N. J. Cavenagh and E. J. Billington, Decompositions of complete multipartite graphs into cycles of even length. Graphs and Combinatorics 16(2000), 49-65. https://doi.org/10.1007/s003730050003
- G. Chartrand and L. Lesniak, Graphs and digraphs, 4th Ed., Chapman & Hall/CRC, Boca Raton, 2005.
- J. R. Cho, Circulant decompositions of certain multipartite graphs into Gregarious cycles of a given length. East Asian Math. J. 30(2014), No. 3, 311-319. https://doi.org/10.7858/eamj.2014.021
- J. R. Cho, M. J. Ferrara, R. J. Gould and J. R. Schmitt, A difference set method for circular decompositions of complete mutipartite graphs into gregarious 4-cycles. Research note, 2006.
- J. R. Cho and R. J. Gould, Decompositions of complete multipartite graphs into gregarious 6-cycles using complete differences. Journal of the Korean Mathematical Society 45(2008) 1623-1634. https://doi.org/10.4134/JKMS.2008.45.6.1623
- E. K. Kim, Y. M. Cho, and J. R. Cho, A difference set method for circulant decom-positions of complete partite graphs into gregarious 4-cycles. East Asian Mathematical Journal 26(2010) 655-670.
-
S. Kim, On decomposition of the complete graphs
$K_{km(2t)}$ into gregarious m-cycles. East Asian Mathematical Journal 29(2013)349-353. https://doi.org/10.7858/eamj.2013.025 - J. Liu, A generalization of the Oberwolfach problem with uniform tables. J. Combin. Theory Ser. A 101(2003), 20-34. https://doi.org/10.1016/S0097-3165(02)00011-0
-
J. Liu, The equipartite Oberwolfach problem and
$C_t$ -factorizations of complete equipartite graphs. J. Combin. Designs 9(2000), 42-49. -
M. Sajna, On decomposiing
$K_n$ -I into cycles of a fixed odd length. Descrete Math. 244(2002), 435-444. https://doi.org/10.1016/S0012-365X(01)00099-1 - M. Sajna, Cycle decompositions III: complete graphs and fixed length cycles. J. Combin. Designs 10(2002), 27-78. https://doi.org/10.1002/jcd.1027
- B. R. Smith, Decomposing complete equipartite graphs into cycles of length 2p. J. Combin. Des. 16 (2008), no. 3, 244252. https://doi.org/10.1002/jcd.20173
- B. R. Smith, Complete equipartite 3p -cycle systems. Australas. J. Combin. 45 (2009), 125138.
- B. R. Smith and N. Cavenagh, Decomposing complete equipartite graphs into odd square-length cycles: number of parts even. Discrete Math. 312(2012), no. 10, 16111622. https://doi.org/10.1016/j.disc.2012.02.010
-
D. Sotteau, Decomposition of
$K_{m,n}$ $(K*_{m,n})$ into cycles (circuits) of length 2k. J. Combin. Theory Ser B. 30(1981), 75-81. https://doi.org/10.1016/0095-8956(81)90093-9