DOI QR코드

DOI QR Code

A REMARK ON CIRCULANT DECOMPOSITIONS OF COMPLETE MULTIPARTITE GRAPHS BY GREGARIOUS CYCLES

  • Received : 2016.12.16
  • Accepted : 2016.12.26
  • Published : 2017.01.31

Abstract

Let k, m and t be positive integers with $m{\geq}4$ and even. It is shown that $K_{km+1(2t)}$ has a decomposition into gregarious m-cycles. Also, it is shown that $K_{km(2t)}$ has a decomposition into gregarious m-cycles if ${\frac{(m-1)^2+3}{4m}}$ < k. In this article, we make a remark that the decompositions can be circulant in the sense that it is preserved by the cyclic permutation of the partite sets, and we will exhibit it by examples.

Keywords

References

  1. B. Alspach and H. Gavlas, Cycle decompositions of $K_n$ and $K_n$-I. J. Combin. Theory Ser. B 81(2001), 77-99. https://doi.org/10.1006/jctb.2000.1996
  2. E. Billington and D. G. Hoffman, Decomposition of complete tripartite graphs into gre-garious 4-cycles. Discrete Math. 261(2003), 87-111. https://doi.org/10.1016/S0012-365X(02)00462-4
  3. E. Billington and D. G. Hoffman, Equipartite and almost-equipartite gregarious 4-cycle decompositions, Discrete Math. 308(2008), no. 5-6, 696714. https://doi.org/10.1016/j.disc.2007.07.056
  4. E. Billington, D. G. Hoffman and C. A. Rodger, Resolvable gregarious cycle decompositions of complete equipartite graphs. Discrete Math. 308(2008), no. 13, 28442853. https://doi.org/10.1016/j.disc.2006.06.047
  5. N. J. Cavenagh and E. J. Billington, Decompositions of complete multipartite graphs into cycles of even length. Graphs and Combinatorics 16(2000), 49-65. https://doi.org/10.1007/s003730050003
  6. G. Chartrand and L. Lesniak, Graphs and digraphs, 4th Ed., Chapman & Hall/CRC, Boca Raton, 2005.
  7. J. R. Cho, Circulant decompositions of certain multipartite graphs into Gregarious cycles of a given length. East Asian Math. J. 30(2014), No. 3, 311-319. https://doi.org/10.7858/eamj.2014.021
  8. J. R. Cho, M. J. Ferrara, R. J. Gould and J. R. Schmitt, A difference set method for circular decompositions of complete mutipartite graphs into gregarious 4-cycles. Research note, 2006.
  9. J. R. Cho and R. J. Gould, Decompositions of complete multipartite graphs into gregarious 6-cycles using complete differences. Journal of the Korean Mathematical Society 45(2008) 1623-1634. https://doi.org/10.4134/JKMS.2008.45.6.1623
  10. E. K. Kim, Y. M. Cho, and J. R. Cho, A difference set method for circulant decom-positions of complete partite graphs into gregarious 4-cycles. East Asian Mathematical Journal 26(2010) 655-670.
  11. S. Kim, On decomposition of the complete graphs $K_{km(2t)}$ into gregarious m-cycles. East Asian Mathematical Journal 29(2013)349-353. https://doi.org/10.7858/eamj.2013.025
  12. J. Liu, A generalization of the Oberwolfach problem with uniform tables. J. Combin. Theory Ser. A 101(2003), 20-34. https://doi.org/10.1016/S0097-3165(02)00011-0
  13. J. Liu, The equipartite Oberwolfach problem and $C_t$-factorizations of complete equipartite graphs. J. Combin. Designs 9(2000), 42-49.
  14. M. Sajna, On decomposiing $K_n$-I into cycles of a fixed odd length. Descrete Math. 244(2002), 435-444. https://doi.org/10.1016/S0012-365X(01)00099-1
  15. M. Sajna, Cycle decompositions III: complete graphs and fixed length cycles. J. Combin. Designs 10(2002), 27-78. https://doi.org/10.1002/jcd.1027
  16. B. R. Smith, Decomposing complete equipartite graphs into cycles of length 2p. J. Combin. Des. 16 (2008), no. 3, 244252. https://doi.org/10.1002/jcd.20173
  17. B. R. Smith, Complete equipartite 3p -cycle systems. Australas. J. Combin. 45 (2009), 125138.
  18. B. R. Smith and N. Cavenagh, Decomposing complete equipartite graphs into odd square-length cycles: number of parts even. Discrete Math. 312(2012), no. 10, 16111622. https://doi.org/10.1016/j.disc.2012.02.010
  19. D. Sotteau, Decomposition of $K_{m,n}$ $(K*_{m,n})$ into cycles (circuits) of length 2k. J. Combin. Theory Ser B. 30(1981), 75-81. https://doi.org/10.1016/0095-8956(81)90093-9