DOI QR코드

DOI QR Code

Effects of Oxygen Partial Pressure on Oxidation Behavior of CMnSi TRIP Steel in an Oxidation-Reduction Scheme

  • Kim, Seong-Hwan (Department of Materials Science and Engineering, Korea University) ;
  • Huh, Joo-Youl (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Myung-Soo (POSCO Technical Research Laboratories) ;
  • Kim, Jong-Sang (POSCO Technical Research Laboratories)
  • Received : 2016.12.21
  • Accepted : 2017.01.27
  • Published : 2017.02.28

Abstract

An oxidation-reduction scheme is an alternative approach for improving the galvanizability of advanced high-strength steel in the continuous hot-dip galvanizing process. Here, we investigated the effect of oxygen partial pressure ($P_{O_2}$) on the oxidation behavior of a transformation-induced plasticity steel containing 1.5 wt% Si and 1.6 wt% Mn during heating to and holding for 60 s at $700^{\circ}C$ under atmospheres with various $P_{O_2}$ values. Irrespective of $P_{O_2}$, a thin amorphous Si-rich layer of Si-Mn-O was formed underneath the Fe oxide scale (a $Fe_2O_3/Fe_3O_4$ bilayer) in the heating stage. In contrast to Si, Mn tended to segregate at the scale surface as $(Fe,Mn)_2O_3$. The multilayered structure of $(Fe,Mn)_2O_3/Fe_2O_3/Fe_3O_4$/amorphous Si-Mn-O remained even after extended oxidizing at $700^{\circ}C$ for 60 s. $Fe_2O_3$ was the dominantly growing oxide phase in the scale. The enhanced growth rate of $Fe_2O_3$ with increasing $P_{O_2}$ resulted in the formation of more Kirkendall voids in the amorphous Si-rich layer and a less Mn segregation at the scale surface. The mechanisms underlying the absence of FeO and the formation of Kirkendall voids are discussed.

Keywords

References

  1. B. C. De Cooman, Curr. Opin. Solid. St. M., 8, 285 (2004). https://doi.org/10.1016/j.cossms.2004.10.002
  2. J. Mahieu, S. Claessens, and B. C. De Cooman, Metall. Mater. Trans. A., 32A, 2905 (2001).
  3. A. R. Marder, Prog. Mater. Sci., 45, 191 (2000). https://doi.org/10.1016/S0079-6425(98)00006-1
  4. B. Mintz, Int. Mater. Rev., 46, 169 (2001). https://doi.org/10.1179/095066001771048754
  5. S. H. Kim, J. Y. Huh, S. K. Lee, R. B. Park, and J. S. Kim, Corros. Sci. Tech., 10, 6 (2011).
  6. E. M. Bellhouse, A. I. M. Mertens, and J. R. Mcdermid, Mat. Sci. Eng. A., 463, 147 (2007). https://doi.org/10.1016/j.msea.2006.09.117
  7. Y. Suzuki, T. Yamashita, Y, Sugimoto, S. Fujita, and S. Yamaguchi, ISIJ int., 49, 564 (2009). https://doi.org/10.2355/isijinternational.49.564
  8. Y. F. Gong, H. S. Kim, and B. C. De Cooman, ISIJ Int., 48, 1745 (2008). https://doi.org/10.2355/isijinternational.48.1745
  9. Y. F. Gong, H. S. Kim, and B. C. De Cooman, ISIJ Int., 49, 557 (2009). https://doi.org/10.2355/isijinternational.49.557
  10. T. Van De Putte, D. Loison, J. Penning, and S. Claessens, Metall. Mater. Trans. A., 39, 2875 (2008). https://doi.org/10.1007/s11661-008-9636-9
  11. X. S. Li, S. I. Baek, C. S. Oh, S. J. Kim, and Y. W. Kim, Scripta. Mater., 57, 113 (2007). https://doi.org/10.1016/j.scriptamat.2007.03.040
  12. L. Cho, S. J. Lee, M. S. Kim, Y. H. Kim, and B. C. De Cooman, Metall. Mater. Trans. A, 44, 362 (2013). https://doi.org/10.1007/s11661-012-1392-1
  13. M. Norden, M. Blumenau, T. Wuttke, and K. Peters, Appl. Surf. Sci., 271, 19 (2013). https://doi.org/10.1016/j.apsusc.2012.12.103
  14. L. Bordignon, X. Vanden Eynde, and R. Fransen, Rev. Metall., 101, 559 (2004). https://doi.org/10.1051/metal:2004124
  15. W. Schwenk and A. Rahmel, Oxid. Met., 25, 293 (1986). https://doi.org/10.1007/BF01072910
  16. I. Parezanovic and M. Spiegel, Surf. Eng., 20, 285 (2004). https://doi.org/10.1179/026708404225016517
  17. T. Adachi and G. H. Meier, Oxid. Met., 27, 347 (1987). https://doi.org/10.1007/BF00659276
  18. M. Fukumoto, S. Maeda, S. Hayashi, and T. Narita, Oxid. Met., 55, 401 (2001). https://doi.org/10.1023/A:1010353729663
  19. P. R. S. Jackson and G. R, Wallwork, Oxid. Met., 20, 1 (1983). https://doi.org/10.1007/BF00658124
  20. A. Atkinson and J. W. Gardner, Corros. Sci., 21, 49 (1981). https://doi.org/10.1016/0010-938X(81)90063-9
  21. S. Bhagwat, S. N. Yedave, D. M. Phase, S. M. Chaudhari, S. M. Kanetkar, and S. B. Ogale, Phys. Rev. B, 40, 700 (1989). https://doi.org/10.1103/PhysRevB.40.700
  22. K. Hoshino and N. L. Peterson, J. Phys. Chem. Solids., 46, 1247 (1985). https://doi.org/10.1016/0022-3697(85)90127-1
  23. S. Hallstrom, L. Hoglund, and J. Agren, Acta. Mater., 59, 53 (2011). https://doi.org/10.1016/j.actamat.2010.08.032
  24. N. Birks, G. H. Meier, and F. S. Pettit, Introduction to high temperature oxidation of metals, 2nd ed., Cambridge University Press, Cambridge (2006).

Cited by

  1. Effect of Ni and Cu Addition on Corrosion Behaviors of Pre-Oxidized Ultra-Strong Steel for Automotive Applications vol.57, pp.6, 2019, https://doi.org/10.3365/kjmm.2019.57.6.343
  2. Wetting Behavior of Zn-Al Liquid on Si-Containing Steel After Surface Oxidation and Reduction Treatment vol.51, pp.2, 2020, https://doi.org/10.1007/s11663-020-01782-3