DOI QR코드

DOI QR Code

Complete genome sequence of Bacillus velezensis T20E-257, a plant growth-promoting bacterium, isolated from tomato (Solanum lycopersicum L.) root

토마토 뿌리에서 분리한 식물생육촉진 세균 Bacillus velezensis T20E-257균주의 유전체 염기서열

  • Lee, Shin Ae (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Sang Yoon (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Sang, Mee Kyung (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Song, Jaekyeong (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Weon, Hang-Yeon (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration)
  • 이신애 (국립농업과학원 농업미생물과) ;
  • 김상윤 (국립농업과학원 농업미생물과) ;
  • 상미경 (국립농업과학원 농업미생물과) ;
  • 송재경 (국립농업과학원 농업미생물과) ;
  • 원항연 (국립농업과학원 농업미생물과)
  • Received : 2017.10.17
  • Accepted : 2017.10.31
  • Published : 2017.12.31

Abstract

Bacillus velezensis T20E-257 was isolated from the root tissue of a tomato plant and exhibited plant growth-promoting activity. Here we present the complete genome of strain T20E-257. The genome contains 3,900,066 base pairs with a G + C content of 46.7% in 2 contigs. The genome includes 3,708 coding sequences, 27 rRNAs, and 86 tRNAs. We found gene clusters encoding secondary metabolites with an antimicrobial activity and genes related to the production of indole-3-acetic acid and 2,3-butanediol, which play a role in plant growth and health.

토마토 뿌리에서 분리한 Bacillus velezensis T20E-257 균주는 식물촉진효과가 있었고, 본 연구에서 T20E-257 균주의 유전체 서열을 해독하였다. 유전체 초안에서 포함된 2개 contig는 총 염기서열이 3,900,066 bp고, G + C content가 46.7%이었다. 유전체에서 단백질 유전자 3,708개, rRNA 유전자 27개, tRNA 유전자 86개를 확인하였다. 항균활성을 가지는 2차 대사산물 생합성 관련 유전자군과 식물생육촉진에 관여하는 IAA와 2,3-butadiol 생합성 관련 유전자를 T20E- 257 균주 유전체에서 확인하였다.

Keywords

References

  1. Aziz, R.K., Bartels, D., Best, A.A., De Jongh, M., Disz, T., Edwards, R.A., Formsma, K., Gerdes, S., Glass, E.M., Kubal, M., et al. 2008. The RAST server: Rapid annotations using subsystems technology. BMC Genomics 9, 75. https://doi.org/10.1186/1471-2164-9-75
  2. Blin, K., Wolf, T., Chevrette, M.G., Lu, X., Schwalen, C.J., Kautsar, S.A., Suarez Duran, H.G., de Los Santos, E.L.C., Kim, H.U., Nave, M., et al. 2017. Antismash 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 45, W36-W41. https://doi.org/10.1093/nar/gkx319
  3. Chowdhury, S.P., Hartmann, A., Gao, X., and Borriss, R. 2015. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Front. Microbiol. 6, 780.
  4. Kim, S.Y., Lee, S.Y., Weon, H.Y., Sang, M.K., and Song, J. 2017. Complete genome sequence of Bacillus velezensis M75, a biocontrol agent against fungal plant pathogens, isolated from cotton waste. J. Biotechnol. 241, 112-115. https://doi.org/10.1016/j.jbiotec.2016.11.023
  5. Liu, G., Kong, Y., Fan, Y., Geng, C., Peng, D., and Sun, M. 2017. Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria. J. Biotechnol. 249, 20-24. https://doi.org/10.1016/j.jbiotec.2017.03.018
  6. Meng, Q., Jiang, H., and Hao, J.J. 2016. Effects of Bacillus velezensis strain BAC03 in promoting plant growth. Biol. Control 98, 18-26. https://doi.org/10.1016/j.biocontrol.2016.03.010
  7. Spaepen, S. and Vanderleyden, J. 2011. Auxin and plant-microbe interactions. Cold Spring Harb. Perspect. Biol. 3, a001438.
  8. Yi, H.S., Ahn, Y.R., Song, G.C., Ghim, S.Y., Lee, S., Lee, G., and Ryu, C.M. 2016. Impact of a bacterial volatile 2,3-butanediol on Bacillus subtilis rhizosphere robustness. Front. Microbiol. 7, 993.