DOI QR코드

DOI QR Code

Complete genome sequence of Acidovorax citrulli strain KACC17005, a causal agent for bacterial fruit blotch on watermelon

수박에 과실썩음병을 일으키는 Acidovorax citrulli strain KACC17005의 유전체 해독

  • Park, Hye-Jee (Department of Integrative Plant Science, Chung-Ang University) ;
  • Seong, Hoon Je (Department of Systems Biotechnology, Chung-Ang University) ;
  • Sul, Woo Jun (Department of Systems Biotechnology, Chung-Ang University) ;
  • Oh, Chang-Sik (Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University,) ;
  • Han, Sang-Wook (Department of Integrative Plant Science, Chung-Ang University)
  • 박혜지 (중앙대학교 식물시스템과학과) ;
  • 성훈제 (중앙대학교 시스템생명공학과) ;
  • 설우준 (중앙대학교 시스템생명공학과) ;
  • 오창식 (경희대학교 생명과학대학 원예생명공학과) ;
  • 한상욱 (중앙대학교 식물시스템과학과)
  • Received : 2017.10.20
  • Accepted : 2017.10.27
  • Published : 2017.12.31

Abstract

Acidovorax citrulli is a causal agent for bacterial fruit blotch on watermelon. Here, we report the complete genome sequence of A. citrulli strain KACC17005. The genome contains 5,349,924 bp with G + C contents of 68.54%, including 4,520 protein coding genes in a circular chromosome. It also possesses at least 15 genes encoding putative type III effector proteins, which may contribute to promoting virulence in susceptible hosts or triggering immune responses in resistant hosts.

Acidovorax citrulli 병원세균은 수박에 과실썩음병을 일으킨다. 이 논문에서는 A. citrulli strain KACC17005 균주의 완전한 게놈 서열을 분석하여 보고한다. 게놈은 총 5,349,924 bp로 구성되어 있으며 G + C 함량이 68.54%이다. 단백질을 coding하는 유전자가 총 4,520개이고, 이들 중 적어도 15개의 유전자들은 감수성 식물에서 병원성을 증가시키거나 저항성 식물에서 면역반응을 유도하는데 중요한 제3형 effector 단백질을 코딩하고 있다.

Keywords

References

  1. Alfano, J.R. and Collmer, A. 2004. Type III secretion system effector proteins: Double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol. 42, 385-414. https://doi.org/10.1146/annurev.phyto.42.040103.110731
  2. Angiuoli, S.V., Gussman, A., Klimke, W., Cochrane, G., Field, D., Garrity, G., Kodira, C.D., Kyrpides, N., Madupu, R., Markowitz, V., et al. 2008. Toward an online repository of Standard Operating Procedures (SOPs) for (meta) genomic annotation. Omics 12, 137-141. https://doi.org/10.1089/omi.2008.0017
  3. Borodovsky, M. and Lomsadze, A. 2014. Gene identification in prokaryotic genomes, phages, metagenomes, and EST sequences with GeneMarkS suite. Curr. Protoc. Microbiol. 32, Unit 1E 7.
  4. Burdman, S. and Walcott, R. 2012. Acidovorax citrulli: Generating basic and applied knowledge to tackle a global threat to the cucurbit industry. Mol. Plant Pathol. 13, 805-815. https://doi.org/10.1111/j.1364-3703.2012.00810.x
  5. Chin, C.S., Alexander, D.H., Marks, P., Klammer, A.A., Drake, J., Heiner, C., Clum, A., Copeland, A., Huddleston, J., Eichler, E.E., et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read smrt sequencing data. Nat. Methods 10, 563-569. https://doi.org/10.1038/nmeth.2474
  6. Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C., and Salzberg, S.L. 2004. Versatile and open software for comparing large genomes. Genome Biol. 5, R12. https://doi.org/10.1186/gb-2004-5-2-r12
  7. Latin, R.X. and Hopkins, D.L. 1995. Bacterial fruit blotch of watermelon - the hypothetical exam question becomes reality. Plant Dis. 79, 761-765. https://doi.org/10.1094/PD-79-0761
  8. Willems, A., Goor, M., Thielemans, S., Gillis, M., Kersters, K., and Deley, J. 1992. Transfer of several phytopathogenic pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci. Int. J. Syst. Bacteriol. 42, 107-119. https://doi.org/10.1099/00207713-42-1-107

Cited by

  1. Putative Bifunctional Chorismate Mutase/Prephenate Dehydratase Contributes to the Virulence of Acidovorax citrulli vol.11, pp.None, 2017, https://doi.org/10.3389/fpls.2020.569552