References
- H. L. Cloke and F. Pappenberger, "Ensemble flood forecasting: A review," Journal of Hydrology, vol. 375, 2009, pp. 613-626. https://doi.org/10.1016/j.jhydrol.2009.06.005
- L. H. Feng and J. Lu, "The practical research on flood forecasting based on artificial neural networks," Expert Systems with Applications, vol. 37, 2010, pp. 2974-2977. https://doi.org/10.1016/j.eswa.2009.09.037
- D. Demeritt, H. Cloke, F. Pappenberger, J. Thielen, J. Bartholmes, and M.-H. Ramos, "Ensemble predictions and perceptions of risks, uncertainty, and error in flood forecasting," Environmental Hazards, vol. 7, no. 2, 2007, pp.115-127. https://doi.org/10.1016/j.envhaz.2007.05.001
- A. de Roo, B. Gouweleeuw, J. Thielen, J. Bartholmes, P. Bongioannini-Cerlini, E. Todini, P. D. Bates, M. Horritt, N. Hunter, K. Beven, F. Pappenberger, E. Heise, G. Rivin, M. Hils, A. Hollingsworth, B. Holst, J. Kwadijk, P. Reggiani, M. van Dijk, K. Sattler, and E. Sprokkereef, "Development of a European flood forecasting system," International Journal of River Basin Management, vol. 1, 2003, pp. 49-59. https://doi.org/10.1080/15715124.2003.9635192
- C. W. Dawson and R. L. Wilby, "Hydrological modeling using artificial neural networks," Progress in Physical Geography, vol. 25, 2001, pp. 80-108. https://doi.org/10.1177/030913330102500104
- K. Hornik, M. Stinchcombe, and H. White, "Multilayer Feed-forward Networks are Universal Approximators," Neural Networks, vol. 2, 1989, pp. 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
- K. Hornik, "Approximation Capabilities of Multilayer Feedforward Networks," Neural Networks, vol. 4, 1991, pp. 251-257. https://doi.org/10.1016/0893-6080(91)90009-T
- S. Suzuki, "Constructive Function Approximation by Three-Layer Artificial Neural Networks," Neural Networks, vol. 11, 1998, pp. 1049-1058. https://doi.org/10.1016/S0893-6080(98)00068-9
- C. Phua, D. Alahakoon, and V. Lee, "Minority report in fraud detection: classification of skewed data," ACM SIGKDD Explorations Newsletter, vol. 6, issue. 1, 2004, pp. 50-59. https://doi.org/10.1145/1007730.1007738
- C. M. Bishop, Pattern Recognition and Machine Learning, Springer Science+Business Media LLC, 2006.
- F. Altiparmak, B. Dengiz, and A. E. Smith, "A general neural network model for estimating telecommunications network reliability," IEEE Trans. Reliability, vol. 58, issue. 1, 2009, pp. 2-9. https://doi.org/10.1109/TR.2008.2011854
- I. Kaaastra and M. Boyd, "Designing a neural network for forecasting financial and economic time series," Neurocomputing, vol. 10, issue. 3, 1996, pp. 215-236. https://doi.org/10.1016/0925-2312(95)00039-9
- Y. LeCun, Y. Bengio, and G. Hinton, "Deep Learning," Nature, vol. 521, 2015, pp. 436-444. https://doi.org/10.1038/nature14539
- A. Atiya and S. Shaheen, "A comparison between neural-network forecasting techniques-case study: river flow forecasting," IEEE Trans. Neural Networks, vol. 10, no. 2, 1999, pp. 402-409. https://doi.org/10.1109/72.750569
- C. W. Dawson, R. J. Abrahart, A. Y. Shamseldin, and R. L. Wilby, "Flood estimation at ungauged sites using artificial neural networks," Journal of Hydrology, vol. 319, 2006, pp. 391-409. https://doi.org/10.1016/j.jhydrol.2005.07.032
- Y. Wei, W. Xu, Y. Fan, and H.-T. Tasi, "Artificial neural network based predictive method for flood disaster," Computers & Industrial Engineering, vol. 42, 2002, pp. 383-390. https://doi.org/10.1016/S0360-8352(02)00047-5
- M. P. Rajurkar, U. C. Kothyari, and U. C. Chaube, "Modelling of the daily rainfall-runoff relationship with artificial neural network," Journal of Hydrology, vol. 285, 2004, pp. 96-113. https://doi.org/10.1016/j.jhydrol.2003.08.011
- S. Raid, J. Mania, L. Bouchaou, and Y. Najjar, "Rainfall-runoff model using an artificial neural network approach," Mathematical and Computer Modelling, vol. 40, 2004, pp. 839-846. https://doi.org/10.1016/j.mcm.2004.10.012
- S. Raid, J. Mania, L. Bouchaou, and Y. Najjar, "Predicting catchment flow in a semi-arid region via an artificial neural network," Hydrological Processes, vol. 18, 2004, pp. 2387-2393. https://doi.org/10.1002/hyp.1469
- L. H. C. Chua and T. S. W. Wong, "Improving event-based rainfall-runoff modeling using a combined artificial neural network-kinematic wave approach," Journal of Hydrology, vol. 390, 2010, pp. 92-107. https://doi.org/10.1016/j.jhydrol.2010.06.037
- D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing, Cambridge, MA, 1986.
- Q. K. Tran and S. K. Song, "Water level forecasting based on deep learning: a use case of Trinity River-Texas-The United Sattes," Journal of KIISE, vol. 44, 2017, pp. 607-612. https://doi.org/10.5626/JOK.2017.44.6.607
- F. J. Chang, P. A. Chen, Y. R. Lu, E. Huang, and K. Y. Chang, "Real-time multi-step-ahead water level forecasting by recurrent neural neyworks for urban flood control," Journal of Hydrology, vol. 517, 2014, pp. 836-846. https://doi.org/10.1016/j.jhydrol.2014.06.013
- S. H. Oh, "Improving the error back-propagation algorithm with a modified error function," IEEE Trans. Neural Networks, vol. 8, 1997, pp. 799-803. https://doi.org/10.1109/72.572117
- J. B. Hampshire II and A. H. Waibel, "A novel objective function for improved phoneme recognition using time-delay neural networks," IEEE Trans. Neural Networks, vol. 1, 1990, pp. 216-228. https://doi.org/10.1109/72.80233
- S. H. Oh, "Error back-propagation algorithm for classification of imbalanced data," Neurocomputing, vol. 74, 2011, pp. 1058-1061. https://doi.org/10.1016/j.neucom.2010.11.024
- L. Bruzzone and S. B. Serpico, "Classification of imbalanced remote-sensing data by neural networks," Pattern Recognition Letters, vol. 18, 1997, pp. 1323-1328. https://doi.org/10.1016/S0167-8655(97)00109-8
- R. K. Cheing, I. Lustig, and A. L. Kornhauser, "Relative effectiveness of training set patterns for backpropagation," Proc. IJCNN, Washington, D.C., Jan 15-19, 1990, vol. I, pp. 673-678.
- A. van Ooyen and B. Nienhuis, "Improving the convergence of the backpropagation algorithm," Neural Networks, vol. 5, 1992, pp. 465-471. https://doi.org/10.1016/0893-6080(92)90008-7
- S. H. Oh and H. Wakuya, "Hydrological modeling of water level near "Hahoe Village" based on multi-layer perceptron," Int. Journal of Contents, vol. 12, no. 1, 2016, pp. 49-53. https://doi.org/10.5392/IJOC.2016.12.1.049