DOI QR코드

DOI QR Code

Influence of Regularization Parameter on Algebraic Reconstruction Technique

대수적 재구성 기법에서 정규화 인자의 영향

  • Son, Jung Min (Department of Radiological Science, The Graduate School of Daegu Catholic University) ;
  • Chon, Kwon Su (Department of Radiological Science, The Graduate School of Daegu Catholic University)
  • 손정민 (대구가톨릭대학교 일반대학원 방사선학과) ;
  • 천권수 (대구가톨릭대학교 일반대학원 방사선학과)
  • Received : 2017.09.30
  • Accepted : 2017.12.31
  • Published : 2017.12.31

Abstract

Computed tomography has widely been used to diagnose patient disease, and patient dose also increase rapidly. To reduce the patient dose by CT, various techniques have been applied. The iterative reconstruction is used in view of image reconstruction. Image quality of the reconstructed section image through algebraic reconstruction technique, one of iterative reconstruction methods, was examined by the normalized root mean square error. The computer program was written with the Visual C++ under the parallel beam geometry, Shepp-Logan head phantom of $512{\times}512$ size, projections of 360, and detector-pixels of 1,024. The forward and backward projection was realized by Joseph method. The minimum NRMS of 0.108 was obtained after 10 iterations in the regularization parameter of 0.09-0.12, and the optimum image was obtained after 8 and 6 iterations for 0.1% and 0.2% noise. Variation of optimum value of the regularization parameter was observed according to the phantom used. If the ART was used in the reconstruction, the optimal value of the regularization parameter should be found in the case-by-case. By finding the optimal regularization parameter in the algebraic reconstruction technique, the reconstruction time can be reduced.

환자의 병변 진단에 효과적인 CT 검사가 광범위하게 실시되고 있어, 방사선 피폭이 매우 크게 증가하였다. 환자의 피폭 선량을 줄이기 위해 다양한 방법이 강구되고 있고, 영상재구성 측면에서 반복 재구성 기법이 적용되고 있다. 반복 재구성 기법 중 대수적 재구성 기법의 정규화 인자에 대한 재구성된 단면 영상의 품질을 정규화 제곱평균제곱근 오차를 이용하여 조사하였다. 프로그램은 Visual C++로 작성하였으며 평행빔하에서 $512{\times}512$ 크기의 Shepp-Logan 두부 팬텀, 360장의 투영 영상, 1024개의 검출기 픽셀을 적용하였고, 전방투영과 역투영에 Joseph 방법을 사용하였다. 0.09-0.12의 정규화 인자에서 10회 반복으로 최소의 NRMS값 0.108을 얻었고 0.1% 및 0.2%의 잡음에 대해 8회 및 6회에서 최적의 영상을 보였다. 사용하는 팬텀에 따라 최적화된 값의 변동이 관찰되어 ART를 사용할 경우 정규화 인자에 대해서는 case-by-case로 최적의 값을 찾아야 한다는 것을 알 수 있다. 대수적 재구성 기법에서 최적의 정규화 인자를 발견함으로써 단면 영상을 획득하는데 걸리는 시간을 단축할 수 있을 것이다.

Keywords

References

  1. W. A. Kalender, "X-ray computed tomography," Phy. Med. Biol. Vol. 51, ppR29-R43, 2006. https://doi.org/10.1088/0031-9155/51/13/R03
  2. J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances, SPIE Press, Washington, 2009.
  3. A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging, IEEE Press, New York, 1988.
  4. J. Hausleiter, T. Meyer, F. Hermann, M. Hadamitzky, M. Krebs, T. C. Gerber, C. McCollough, S. Martinoff, A. Kastrati, A. Schömig, S. Achenbach, "Estimated Radiation Dose Associated With Cardiac CT Angiography," JAMA, Vol. 301, pp.500-507, 2009. https://doi.org/10.1001/jama.2009.54
  5. M. K. Kalra, M. M. Maher, T. L. Toth, L. M. Hamberg, M. A. Blake, J. Shepard, S. Saini, "Strategies for CT Radiation Dose Optimization," Radiology, Vol. 230, pp.619-628, 2004. https://doi.org/10.1148/radiol.2303021726
  6. C. H. McCollough, A. N. Primak, N. Braunc, J. Kofler, L. Yu, J. Christner, "Strategies for Reducing Radiation Dose in CT," Radiol. Clin. North. Am., Vol. 47, pp.27-40, 2009. https://doi.org/10.1016/j.rcl.2008.10.006
  7. A. R. Goldman, P. D. Maldjian, "Reducing Radiation Dose in Body CT: A Practical Approach to Optimizing CT Protocols," AJR, Vol. 200, pp.748-754, 2013. https://doi.org/10.2214/AJR.12.10330
  8. G. T. Herman, A. Lent, "Iterative reconstruction algorithms," Computers in Biology and Medicine, Vol. 6, pp.273-294, 1976. https://doi.org/10.1016/0010-4825(76)90066-4
  9. M. J. Willemink, P. A. de Jong, T. Leiner, L. M. de Heer, R. A. J. Nievelstein, R. P. J. Budde, A. M. R. Schilham, "Iterative reconstruction techniques for computed tomography Part 1: Technical principles,", European Radiology, Vol. 23. pp.1623-1631, 2013. https://doi.org/10.1007/s00330-012-2765-y
  10. M. J. Willemink, T. Leiner, P. A. de Jong, L. M. de Heer, R. A. J. Nievelstein, A. M. R. Schilham, R. P. J. Budde, "Iterative reconstruction techniques for computed tomography part 2: initial results in dose reduction and image quality,", European Radiology, Vol. 23. pp.1632-1642, 2013. https://doi.org/10.1007/s00330-012-2764-z
  11. J. Mesquita, N. Matela, N. Oliveira, M. V. Martins, P. Almeida, "Choosing the ART relaxation parameter for Clear-PEM 2D image reconstruction," Computer Methods and Programs in Biomedicine. Vol. 98, pp.183-190, 2010. https://doi.org/10.1016/j.cmpb.2009.11.010
  12. S. Zhang, D. Zhang, H. Gong, O. Ghasemalizadeh, G. Wang, G. Cao, "Fast and accurate computation of system matrix for area integral model-based algebraic reconstruction technique," Optical Engineering, Vol. 53, pp.113101, 2014. https://doi.org/10.1117/1.OE.53.11.113101
  13. P. M. Joseph, "An Improved Algorithm for Reprojecting Rays through Pixel Images," IEEE Transactions on Medical Imaging, Vol. 1, pp.192-196, 1982. https://doi.org/10.1109/TMI.1982.4307572