DOI QR코드

DOI QR Code

Computer-Aided Drug Discovery in Plant Pathology

  • Shanmugam, Gnanendra (Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University) ;
  • Jeon, Junhyun (Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University)
  • Received : 2017.04.12
  • Accepted : 2017.09.06
  • Published : 2017.12.01

Abstract

Control of plant diseases is largely dependent on use of agrochemicals. However, there are widening gaps between our knowledge on plant diseases gained from genetic/mechanistic studies and rapid translation of the knowledge into target-oriented development of effective agrochemicals. Here we propose that the time is ripe for computer-aided drug discovery/design (CADD) in molecular plant pathology. CADD has played a pivotal role in development of medically important molecules over the last three decades. Now, explosive increase in information on genome sequences and three dimensional structures of biological molecules, in combination with advances in computational and informational technologies, opens up exciting possibilities for application of CADD in discovery and development of agrochemicals. In this review, we outline two categories of the drug discovery strategies: structure- and ligand-based CADD, and relevant computational approaches that are being employed in modern drug discovery. In order to help readers to dive into CADD, we explain concepts of homology modelling, molecular docking, virtual screening, and de novo ligand design in structure-based CADD, and pharmacophore modelling, ligand-based virtual screening, quantitative structure activity relationship modelling and de novo ligand design for ligand-based CADD. We also provide the important resources available to carry out CADD. Finally, we present a case study showing how CADD approach can be implemented in reality for identification of potent chemical compounds against the important plant pathogens, Pseudomonas syringae and Colletotrichum gloeosporioides.

Keywords

References

  1. Adam, M. 2005. Integrating research and development: the emergence of rational drug design in the pharmaceutical industry. Stud. Hist. Philos. Biol. Biomed. Sci. 36:513-537. https://doi.org/10.1016/j.shpsc.2005.07.003
  2. Al-Hussaini, R. and Mahasneh, A. M. 2009. Microbial growth and quorum sensing antagonist activities of herbal plants extracts. Molecules 14:3425-3435. https://doi.org/10.3390/molecules14093425
  3. Baig, M. H., Ahmad, K., Roy, S., Ashraf, J. M., Adil, M., Siddiqui, M. H., Khan, S., Kamal, M. A., Provaznik, I. and Choi, I. 2016. Computer aided drug design: success and limitations. Curr. Pharm. Des. 22:572-81. https://doi.org/10.2174/1381612822666151125000550
  4. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. and Bourne, P. E. 2000. The protein data bank. Nucleic Acids Res. 28:235-242. https://doi.org/10.1093/nar/28.1.235
  5. Boch, J. and Bonas, U. 2010. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu. Rev. Phytopathol. 48:419-436. https://doi.org/10.1146/annurev-phyto-080508-081936
  6. Bocsanczy, A. M., Nissinen, R. M., Oh, C.-S. and Beer, S. V. 2008. HrpN of Erwinia amylovora functions in the translocation of DspA/E into plant cells. Mol. Plant Pathol. 9:425-434. https://doi.org/10.1111/j.1364-3703.2008.00471.x
  7. Bohm, H. J. 1996. Current computational tools for de novo ligand design. Curr. Opin. Biotechnol. 7:433-436. https://doi.org/10.1016/S0958-1669(96)80120-0
  8. Bordas, B., Komives, T. and Lopata, A. 2003. Ligand-based computer-aided pesticide design. A review of applications of the CoMFA and CoMSIA methodologies. Pest Manag. Sci. 59:393-400. https://doi.org/10.1002/ps.614
  9. Boucher, C. A., Barberis, P. A. and Demery, D. A. 1985. Transposon mutagenesis of Pseudomonas solanacearum: isolation of Tn5-induced avirulent mutants. Microbiology 131:2449-2457. https://doi.org/10.1099/00221287-131-9-2449
  10. Boyd, L. A., Ridout, C., O'Sullivan, D. M., Leach, J. E. and Leung, H. 2013. Plant-pathogen interactions: disease resistance in modern agriculture. Trends Genet. 29:233-240. https://doi.org/10.1016/j.tig.2012.10.011
  11. Bratkovic, T., Lunder, M., Urleb, U. and Strukelj, B. 2008. Peptide inhibitors of MurD and MurE, essential enzymes of bacterial cell wall biosynthesis. J. Basic Microbiol. 48:202-206. https://doi.org/10.1002/jobm.200700133
  12. Cairns, T. C., Studholme, D. J., Talbot, N. J. and Haynes, K. 2016. New and improved techniques for the study of pathogenic fungi. Trends Microbiol. 24:35-50. https://doi.org/10.1016/j.tim.2015.09.008
  13. Cavasotto, C. N. and Phatak, S. S. 2009. Homology modeling in drug discovery: current trends and applications. Drug Discov. Today 14:676-683. https://doi.org/10.1016/j.drudis.2009.04.006
  14. Chandler, D., Bailey, A. S., Tatchell, G. M., Davidson, G., Greaves, J. and Grant, W. P. 2011. The development, regulation and use of biopesticides for integrated pest management. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366:1987-1998. https://doi.org/10.1098/rstb.2010.0390
  15. Chandra, N. 2011. Computational approaches for drug target identification in pathogenic diseases. Expert. Opin. Drug Disc. 6:975-979. https://doi.org/10.1517/17460441.2011.611128
  16. Chen, C. and Dickman, M. B. 2004. Dominant active Rac and dominant negative Rac revert the dominant active Ras phenotype in Colletotrichum trifolii by distinct signalling pathways. Mol. Microbiol. 51:1493-1507. https://doi.org/10.1111/j.1365-2958.2003.03932.x
  17. Cho, J. Y., Choi, G. J., Lee, S. W., Jang, K. S., Lim, H. K., Lim, C. H., Lee, S. O., Cho, K. Y. and Kim, J. C. 2006. Antifungal activity against Colletotrichum spp. of curcuminoids isolated from Curcuma longa L. rhizomes. J. Microbiol. Biotechnol. 16:280-285.
  18. Colovos, C. and Yeates, T. O. 1993. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 2:1511-1519. https://doi.org/10.1002/pro.5560020916
  19. Cos, P., Vlietinck, A. J., Berghe, D. V. and Maes, L. 2006. Antiinfective potential of natural products: how to develop a stronger in vitro 'proof-of-concept'. J. Ethnopharmacol. 106:290-302. https://doi.org/10.1016/j.jep.2006.04.003
  20. Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J. and Foster, G. D. 2012. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13:414-430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
  21. Dehury, B., Sahu, M., Sarma, K., Sahu, J., Sen, P., Modi, M. K., Sharma, G. D., Choudhury, M. D. and Barooah, M. 2013. Molecular phylogeny, homology modeling, and molecular dynamics simulation of race-specific bacterial blight disease resistance protein (xa5) of rice: a comparative agriproteomics approach. OMICS 17:423-438. https://doi.org/10.1089/omi.2012.0131
  22. Deslandes, L. and Rivas, S. 2012. Catch me if you can: bacterial effectors and plant targets. Trends Plant Sci. 17:644-655. https://doi.org/10.1016/j.tplants.2012.06.011
  23. Dey, F. and Caflisch, A. 2008. Fragment-based de novo ligand design by multiobjective evolutionary optimization. J. Chem. Inf. Model 48:679-690. https://doi.org/10.1021/ci700424b
  24. Doucet-Personeni, C., Bentley, P. D., Fletcher, R. J., Kinkaid, A., Kryger, G., Pirard, B., Taylor, A., Taylor, R., Taylor, J., Viner, R., Silman, I., Sussman, J. L., Greenblatt, H. M. and Lewis, T. 2001. A structure-based design approach to the development of novel, reversible AChE inhibitors. J. Med. Chem. 44:3203-3215. https://doi.org/10.1021/jm010826r
  25. Duffy, B. C., Zhu, L., Decornez, H. and Kitchen, D. B. 2012. Early phase drug discovery: cheminformatics and computational techniques in identifying lead series. Bioorg. Med. Chem. 20:5324-5342. https://doi.org/10.1016/j.bmc.2012.04.062
  26. Dunn, M. F., Ramirez-Trujillo, J. A. and Hernandez-Lucas, I. 2009. Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis. Microbiology 155:3166-3175. https://doi.org/10.1099/mic.0.030858-0
  27. Durrant, D. J. and McCammon, J. A. 2010. Computer-aided drugdiscovery techniques that account for receptor flexibility. Curr. Opin. Pharmacol. 10:770-774. https://doi.org/10.1016/j.coph.2010.09.001
  28. Eisenberg, D., Luthy, R. and Bowie, J. U. 1997. VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol. 277:396-406.
  29. El Zoeiby, A., Sanschagrin, F. and Levesque, R. C. 2003. Structure and function of the Mur enzymes: development of novel inhibitors. Mol. Microbiol. 47:1-12.
  30. Eswar, N., Webb, B., Marti-Renom, M. A., Madhusudhan, M. S., Eramian, D., Shen, M., Pieper, U. and Sali, A. 2006. Comparative protein structure modeling using modeller. Curr. Protoc. Bioinformatics Chapter 5:Unit-5.6.
  31. Feil, H., Feil, W. S., Chain, P., Larimer, F., DiBartolo, G., Copeland, A., Lykidis, A., Trong, S., Nolan, M., Goltsman, E., Thiel, J., Malfatti, S., Loper, J. E., Lapidus, A., Detter, J. C., Land, M., Richardson, P. M., Kyrpides, N. C., Ivanova, N. and Lindow, S. E. 2005. Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc. Natl. Acad. Sci. U.S.A. 102:11064-11069. https://doi.org/10.1073/pnas.0504930102
  32. Ferreira, L. G., Dos Santos, R. N., Oliva, G. and Andricopulo, A. D. 2015. Molecular docking and structure-based drug design strategies. Molecules 20:13384-13421. https://doi.org/10.3390/molecules200713384
  33. Franceschetti, M., Maqbool, A., Jimenez-Dalmaroni, M. J., Pennington, H. G., Kamoun, S. and Banfield, M. J. 2017. Effectors of filamentous plant pathogens: commonalities amid diversity. Microbiol. Mol. Biol. Rev. 81:e00066-16.
  34. Gao, Y. M., Wang, X. J., Zhang, J., Li, M., Liu, C. X., An, J., Jiang, L. and Xiang, W. S. 2012. Borrelidin, a potent antifungal agent: insight into the antifungal mechanism against Phytophthora sojae. J. Agric. Food Chem. 60:9874-9881. https://doi.org/10.1021/jf302857x
  35. Geppert, H., Vogt, M. and Bajorath, J. 2010. Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation. J. Chem. Inf. Model 50:205-216. https://doi.org/10.1021/ci900419k
  36. Goodford, P. J. 1985. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 28:849-857. https://doi.org/10.1021/jm00145a002
  37. Han, R., Zhang, J., Li, S., Cao, S., Geng, H., Yuan, Y., Xiao, W., Liu, S. and Liu, D. 2010. Homology modeling and screening of new $14{\alpha}$-demethylase inhibitor (DMI) fungicides based on optimized expression of CYP51 from Ustilago maydis in Escherichia coli. J. Agric. Food Chem. 58:12810-12816. https://doi.org/10.1021/jf103243m
  38. Hanessian, S., Lu, P. P., Sanceau, J. Y., Chemla, P., Gohda, K., Fonne-Pfister, R., Prade, L. and Cowan-Jacob, S. W. 1999. An enzyme-bound bisubstrate hybrid inhibitor of adenylosuccinate synthetase. Angew. Chem. Int. Ed. 38:3159-3162. https://doi.org/10.1002/(SICI)1521-3773(19991102)38:21<3159::AID-ANIE3159>3.0.CO;2-2
  39. Hansch, C. 1969. A quantitative approach to biochemical structure-activity relationships. Acc. Chem. Res. 2:232-239. https://doi.org/10.1021/ar50020a002
  40. Hansch, C. and Fujita, T. 1964. p-${\sigma}$-${\pi}$ Analysis. A method for the correlation of biological activity and chemical structure. J. Am. Chem. Soc. 86:1616-1626. https://doi.org/10.1021/ja01062a035
  41. Hentschel, U., Steinert, M. and Hacker, J. 2000. Common molecular mechanisms of symbiosis and pathogenesis. Trends Microbiol. 8:226-231. https://doi.org/10.1016/S0966-842X(00)01758-3
  42. Herron, S. R., Benen, J. A., Scavetta, R. D., Visser, J. and Jurnak, F. 2000. Structure and function of pectic enzymes: virulence factors of plant pathogens. Proc. Natl. Acad. Sci. U.S.A. 97:8762-8769. https://doi.org/10.1073/pnas.97.16.8762
  43. Huang, S. Y. and Zou, X. 2010. Advances and challenges in protein-ligand docking. Int. J. Mol. Sci. 11:3016-3034. https://doi.org/10.3390/ijms11083016
  44. Hughes, J. P., Rees, S. S., Kalindjian, S. B. and Philpott, K. L. 2011. Principles of early drug discovery. Br. J. Pharmacol. 162:1239-1249. https://doi.org/10.1111/j.1476-5381.2010.01127.x
  45. Imam, J., Singh, P. K. and Shukla, P. 2016. Plant microbe interactions in post genomic era: perspectives and applications. Front. Microbiol. 7:1488.
  46. Jain, V., Sharma, A., Singh, G., Yogavel, M. and Sharma, A. 2017. Structure-based targeting of orthologous pathogen proteins accelerates antiparasitic drug discovery. ACS Infect. Dis. 3:281-292. https://doi.org/10.1021/acsinfecdis.6b00181
  47. Jovanovic, M., James, E. H., Burrows, P. C., Rego, F. G., Buck, M. and Schumacher, J. 2011. Regulation of the co-evolved HrpR and HrpS AAA+ proteins required for Pseudomonas syringae pathogenicity. Nat. Commun. 2:177. https://doi.org/10.1038/ncomms1177
  48. Kalyaanamoorthy, S. and Chen, Y. P. P. 2011. Structure-based drug design to augment hit discovery. Drug Discov. Today 16:831-839. https://doi.org/10.1016/j.drudis.2011.07.006
  49. Kandakatla, N. and Ramakrishnan, G. 2014. Ligand based pharmacophore modeling and virtual screening studies to design novel HDAC2 inhibitors. Adv. Bioinformatics 2014:812148.
  50. Kapetanovic, I. M. 2008. Computer-aided drug discovery and development (CADDD): in silico-chemico-biological approach. Chem. Biol. Interact. 171:165-176. https://doi.org/10.1016/j.cbi.2006.12.006
  51. Katiyar, C., Gupta, A., Kanjilal, S. and Katiya, S. 2012. Drug discovery from plant sources: an integrated approach. Ayu 33:10-19. https://doi.org/10.4103/0974-8520.100295
  52. Laskowski, R. A., MacArthur, M. W., Moss, D. S. and Thornton, J. M. 1993. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26:283-291. https://doi.org/10.1107/S0021889892009944
  53. Lipinski, C. A., Lombardo, F., Dominy, B. W. and Feeney, P. J. 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23:3-25. https://doi.org/10.1016/S0169-409X(96)00423-1
  54. Liu, L., Qu, J., Li, D., Long, G. and Deng, Z. 2012. In silico characterization and molecular modeling of GntR family regulators in Xanthomonas axonopodis pv. citri: Implications for primary metabolism or virulence. Plant Omics 5:494-502.
  55. Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M. A. X., Verdier, V., Beer, S. V., Machado, M. A., Toth, I. A. N., Salmond, G. and Foster, G. D. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant. Pathol. 13:614-629. https://doi.org/10.1111/j.1364-3703.2012.00804.x
  56. McInnes, C. 2007. Virtual screening strategies in drug discovery. Curr. Opin. Chem. Biol. 11:494-502. https://doi.org/10.1016/j.cbpa.2007.08.033
  57. Mole, B. M., Baltrus, D. A., Dangl, J. L. and Grant, S. R. 2007. Global virulence regulation networks in phytopathogenic bacteria. Trends Microbiol. 15:363-371. https://doi.org/10.1016/j.tim.2007.06.005
  58. Oprea, T. I. and Matter, H. 2004. Integrating virtual screening in lead discovery. Curr. Opin. Chem. Biol. 8:349-358. https://doi.org/10.1016/j.cbpa.2004.06.008
  59. Pathak, R. K., Taj, G., Pandey, D., Kasana, V. K., Baunthiyal, M. and Kumar, A. 2016. Molecular modeling and docking studies of phytoalexin(s) with pathogenic protein(s) as molecular targets for designing the derivatives with anti-fungal action on 'Alternaria' spp. of 'Brassica'. Plant Omics 9:172-182. https://doi.org/10.21475/poj.16.09.03.p7654
  60. Pitzschke, A. and Hirt, H. 2010. New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. EMBO J. 29:1021-1032. https://doi.org/10.1038/emboj.2010.8
  61. Ramakrishnan, J., Rathore, S. S. and Raman, T. 2016. Review on fungal enzyme inhibitors-potential drug targets to manage human fungal infections. RSC Adv. 6:42387-42401. https://doi.org/10.1039/C6RA01577H
  62. Rarey, M., Kramer, B., Lengauer, T. and Klebe, G. 1996. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261:470-489. https://doi.org/10.1006/jmbi.1996.0477
  63. Rost, B. 1999. Twilight zone of protein sequence alignments. Protein Eng. 12:85-94. https://doi.org/10.1093/protein/12.2.85
  64. Rost, B. and Sander, C. 1996. Bridging the protein sequencestructure gap by structure predictions. Annu. Rev. Biophys. Biomol. Struct. 25:113-136. https://doi.org/10.1146/annurev.bb.25.060196.000553
  65. Sagatova, A. A., Keniya, M. V., Wilson, R. K., Monk, B. C. and Tyndall, J. D. 2015. Structural insights into binding of the antifungal drug fluconazole to Saccharomyces cerevisiae lanosterol $14{\alpha}$-demethylase. Antimicrob. Agents Chemother. 59:4982-4989. https://doi.org/10.1128/AAC.00925-15
  66. Schwede, T. 2013. Protein modeling: What happened to the "protein structure gap"? Structure 21:1531-1540. https://doi.org/10.1016/j.str.2013.08.007
  67. Siegel, M. R. 1981. Sterol-inhibiting fungicides: effects on sterol biosynthesis and sites of action. Plant Dis. 65:986-989. https://doi.org/10.1094/PD-65-986
  68. Singh, D. B. 2014. Success, limitation and future of computer aided drug designing. Transl. Med. (Sunnyvale) 4:e127.
  69. Sliwoski, G., Kothiwale, S., Meiler, J. and Lowe, E. W. 2013. Computational methods in drug discovery. Pharmacol. Rev. 66:334-395. https://doi.org/10.1124/pr.112.007336
  70. Soundararajan, P., Sakkiah, S., Sivanesan, I., Lee, K. W. and Jeong, B. R. 2011. Macromolecular docking simulation to identify binding site of FGB1 for antifungal compounds. Bull. Korean Chem. Soc. 32:3675-3681. https://doi.org/10.5012/bkcs.2011.32.10.3675
  71. Strange, R. N. and Scott, P. R. 2005. Plant disease: a threat to global food security. Annu. Rev. Phytopathol. 43:83-116. https://doi.org/10.1146/annurev.phyto.43.113004.133839
  72. Takano, Y., Kikuchi, T., Kubo, Y., Hamer, J. E., Mise, K. and Furusawa, I. 2000. The Colletotrichum lagenarium MAP kinase gene CMK1 regulates diverse aspects of fungal pathogenesis. Mol. Plant-Microbe Interact. 13:374-383. https://doi.org/10.1094/MPMI.2000.13.4.374
  73. Talele, T. T., Khedkar, S. A. and Rigby, A. C. 2010. Successful applications of computer aided drug discovery: moving drugs from concept to the clinic. Curr. Top. Med. Chem. 10:127-141. https://doi.org/10.2174/156802610790232251
  74. Taylor, D. 2015. the pharmaceutical industry and the future of drug development. In: Pharmaceuticals in the environment, eds. by R. E. Hester and R. M. Harrison, pp. 1-33. The Royal Society of Chemistry, London.
  75. Tomasic, T., Sink, R., Zidar, N., Fic, A., Contreras-Martel, C., Dessen, A., Patin, D., Blanot, D., Muller-Premru, M., Gobec, S., Zega, A., Kikelj, D. and Masic, L. P. 2012. Dual inhibitor of MurD and MurE ligases from Escherichia coli and Staphylococcus aureus. ACS Med. Chem. Lett. 3:626-630. https://doi.org/10.1021/ml300047h
  76. Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I. and Mackerell, A. D. 2010. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31:671-690.
  77. Walter, M. W. 2002. Structure-based design of agrochemicals. Nat. Prod. Rep. 19:278-291. https://doi.org/10.1039/b100919m
  78. Weigelt, J. 2010. Structural genomics-impact on biomedicine and drug discovery. Exp. Cell Res. 316:1332-1338. https://doi.org/10.1016/j.yexcr.2010.02.041
  79. Wride, D. A., Pourmand, N., Bray, W. M., Kosarchuk, J. J., Nisam, S. C., Quan, T. K., Berkeley, R. F., Katzman, S., Hartzog, G. A., Dobkin, C. E. and Lokey, R. S. 2014. Confirmation of the cellular targets of benomyl and rapamycin using next-generation sequencing of resistant mutants in S. cerevisiae. Mol. Biosyst. 10:3179-3187. https://doi.org/10.1039/C4MB00146J
  80. Xue, Y., Shui, G. and Wenk, M. R. 2014. TPS1 drug design for rice blast disease in Magnaporthe oryzae. Springerplus 3:18. https://doi.org/10.1186/2193-1801-3-18
  81. Yakoby, N., Kobiler, I., Dinoor, A. and Prusky, D. 2000. pH regulation of pectate lyase secretion modulates the attack of Colletotrichum gloeosporioides on avocado fruits. Appl. Environ. Microbiol. 66:1026-1030. https://doi.org/10.1128/AEM.66.3.1026-1030.2000
  82. Yang, G. F., Jiang, X. H., Ding, Y. and Yang, H. Z. 2002. Three dimentional quantitative structure-activity relationships of novel 2-heteroaryl-4-chromanone derivatives. Acta Chim. Sin. 60:134-138.
  83. Yang, S. Y. 2010. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov. Today 15:444-450. https://doi.org/10.1016/j.drudis.2010.03.013
  84. Zhou, Y., Chen, L., Hu, J., Duan, H., Lin, D., Liu, P., Meng, Q., Li, B., Si, N., Liu, C. and Liu, X. 2015. Resistance mechanisms and molecular docking studies of four novel QoI fungicides in Peronophythora litchii. Sci. Rep. 5:17466. https://doi.org/10.1038/srep17466

Cited by

  1. Synergism of Plant Compound With Traditional Antimicrobials Against Streptococcus spp. Isolated From Bovine Mastitis vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.01203