DOI QR코드

DOI QR Code

Exploring Secondary Students' Dialogic Argumentation Regarding Excretion via Collaborative Modeling

배설에 대한 협력적 모델링 과정에서 나타난 중학교 학생들의 대화적 논변활동 탐색

  • Received : 2017.11.24
  • Accepted : 2017.12.14
  • Published : 2017.12.31

Abstract

The purpose of this study is to explore how the flow of discourse move and their reasoning process in dialogic argumentation during group modeling on excretion. Five groups of three to four students in the second grade of a middle school participated in the modeling practice of a Gifted Center. Analysis was conducted on argumentation during the modeling activity in which students should explain how the waste product (ammonia) leaves the body. It was found that there was a sequential argumentative process-tentative consensus, solving the uncertainty, and consensus. There were several discourse moves - 'claim' and 'counterclaim' in the stage of tentative consensus, 'query' and 'clarification of meaning' in the stage of solving the uncertainty, and 'change of claim' in the stage of consensus. Students participated in the dialogic argumentation by constructing argument collaboratively for reaching a consensus. Critical questioning in the stage of solving the uncertainty and reasoning in the stage of consensus were the impact factors of dialogic argumentation. By answering the critical questions, students changed their claims or suggested new claims by defending or rebutting previous claims. Students justified group claims with diverse argumentation scheme and scientific reasoning to reach a group consensus. These findings have implication for science educators who want to adopt dialogic argumentation in science classes.

본 연구의 목적은 배설에 대한 소집단 모델링 기반 탐구 활동에서 나타나는 중학생들의 대화적 논변활동 과정에서 담화 이동 흐름과 합의에 이르는 추론 과정을 심층적으로 탐색하는 것이다. 참여 학생들은 영재원 중학교 학생들 17명이며, 3~4명이 한 소집단을 이루었다. 배설에 대한 소집단 모델링 활동 중에서 치킨을 먹은 후 체내에서 생성되는 노폐물(암모니아)는 우리 몸에서 어떻게 될지 설명하는 초기 모델을 형성하는 활동을 대상으로 분석이 이루어졌다. 학생들의 모델링 활동 중 논변적 상호작용을 분석한 결과 다음과 같은 결과를 확인할 수 있었다. 우선, 최초의 주장이 나타나는 잠정적 합의하기, '질문하기'와 '의미 명확히 하기'가 나타나는 불확실성 해결하기와 같은 공통적인 논변활동 단계가 나타났고, 다양한 주장이 존재한 소집단에서는 합의하기 단계가 추가적으로 나타나 '주장변경하기'의 담화 이동이 나타났다. 합의에 도달하기 위해 협력적으로 다른 사람의 논변에 참여했다는 측면에서 대화적 논변활동이 나타난 것을 확인할 수 있었다. 또한, 학생들의 논변활동에서 불확실성 해결하기 단계에서 비판적 질문을 하는 과정과 합의하기 단계에서 주장을 정당화하는 추론 과정에서 소집단 합의가 일어나도록 하는 대화적 논변활동 과정을 확인할 수 있었다. 비판적 질문을 통해 기존의 주장이 강화되거나 탈락되어 학생들은 자신의 주장을 변경하거나 새로운 주장을 제시하기도 하였다. 소집단 합의가 나타나는 순간의 추론을 분석해보면, 학생들은 개인 경험에 근거한 추론을 위한 자료 출처보다 과학적 사실에 근거한 추론을 위한 자료 출처를 선호하였으며 다양한 논변의 정당화 분석틀로 정당화를 하여 소집단 주장을 공고히 하였다. 본 연구결과를 통해 과학 수업에서 대화적 논변활동 맥락을 이해하고 반영할 수 있는 교육적 함의를 제공해줄 수 있을 것이다.

Keywords

References

  1. Berland, L. K., & Lee, V. R. (2012). In pursuit of consensus: Disagreement and legitimization during small-group argumentation. International Journal of Science Education, 34(12), 1857-1882. https://doi.org/10.1080/09500693.2011.645086
  2. Berland, L. K., & McNeill, K. L. (2010). A learning progression for scientific argumentation: Understanding student work and designing supportive instructional contexts. Science Education, 94(5), 765-793. https://doi.org/10.1002/sce.20402
  3. Berland, L. K., & Reiser, B. J. (2011). Classroom communities' adaptations of the practice of scientific argumentation. Science Education, 95(2), 191-216. https://doi.org/10.1002/sce.20420
  4. Chin, C., & Osborne, J. (2008). Students’ questions: a potential resource for teaching and learning science. Studies in Science Education, 44(1), 1-39. https://doi.org/10.1080/03057260701828101
  5. Chin, C., & Osborne, J. (2010). Students' questions and discursive interaction: Their impact on argumentation during collaborative group discussions in science. Journal of Research in Science Teaching, 47(7), 883-908. https://doi.org/10.1002/tea.20385
  6. Clark, D., & Sampson, V. (2008). Assessing dialogic argumentation in online environments to relate structure, grounds, and conceptual quality. Journal of Research in Science Teaching, 45(3), 293-321. https://doi.org/10.1002/tea.20216
  7. Clement, J. J. (2008). Student/teacher co-construction of visualizable models in large group discussion. In J. J. Clement & M. A. Rea-Ramirez (Eds.), Model Based Learning and Instruction in Science (pp. 11-22). Dordrecht, The Netherlands: Springer.
  8. Cornelius, L. L., & Herrenkohl, L. R. (2004). Power inb the classroom: How the classroom environment shapes students’ relationships with each other and with concepts. Cognition and Instruction, 22(4), 467-498. https://doi.org/10.1207/s1532690Xci2204_4
  9. Din-Yan, Y. (1998). Alternative conceptions on excretion and implications for teaching. Chinese. University Education Journal, 26(1), 101-116.
  10. Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287-312. https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A
  11. Duschl, R. A. (2007). Quality argumentation and epistemic criteria. In S. Erduran & M. P. Jimenez-Aleixandre (Eds.), Argumentation in science education (pp. 159-175). The Netherlands: Springer.
  12. Duschl, R. A. (2008). Science education in 3 part harmony: Balancing conceptual, epistemic and social goals. Review of Research in Education, 32, 268-291. https://doi.org/10.3102/0091732X07309371
  13. Duschl, R. A., Schweingruber, H. A., & Shouse, A. W. (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: National Academies Press.
  14. Ebenezer, J., Chacko, S., Nafiz, O., Kiran, S., & Ebenezer, L. (2009). The effects of common knowledge construction model sequence of lessons on science achievement and relational conceptual change. Journal of Research in Science Teaching, 27(1), 25-46.
  15. Erduran, S., Simon, S., & Osborne, J. (2004). TAPping into argumentation: Developments in the application ofToulmin's argument pattern for studying science discourse. Science Education, 88(6), 915-933. https://doi.org/10.1002/sce.20012
  16. Giere, R. N. (1999) Using models to represent reality. In L. Magnani, N. J. Nersessian, P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp 41-57). Dordrecht: Kluwer Academic.
  17. Gilbert, J. K., Boulter, C. J., Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. K. Gilbert, C. J. Boulter (Eds.), Developing models in science education (pp 3-17). Dordrecht: Kluwer Academic.
  18. Jimenez-Aleixandre, M. P. (2014). Determinism and Underdetermination in Genetics: Implication for Students’ Engagement in Argumentation and Epistemic Practice. Science & Education, 23(2), 465-484. https://doi.org/10.1007/s11191-012-9561-6
  19. Jimenez-Aleixandre, M. P., Rodriguez, A., & Duschl, R. A. (2000). Doing the lesson or doing science: argument in high school genetics. Science Education, 84(6), 757-792 https://doi.org/10.1002/1098-237X(200011)84:6<757::AID-SCE5>3.0.CO;2-F
  20. Kelly, G. J. (2008). Inquiry, activity and epistemic practice. In R. A. Duschl & R. E. Grandy (Eds.), Teaching scientific inquiry: Recommendations for research and implementation (pp. 99-117). Rotterdam: Sense Publishers.
  21. Kim, M., Anthony, R., & Blades, D. (2014). Decision making through dialogue: a case study of analyzing preservice teachers’ argumentation on socioscientific issues. Research in Science Education, 44(6), 903-926. https://doi.org/10.1007/s11165-014-9407-0
  22. Lederman, N. G. (2007). Nature of science: Past, present, and future. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 831 - 879). Mahwah, NJ: Erlbaum.
  23. Lee, H. S., Liu, O. L., Pallant, A., Roohr, K. C., Pryputniewicz, S., & Buck, Z. E. (2014). Assessment of uncertainty-infused science argumentation. Journal of Research in Science Teaching, 51(5), 581-605. https://doi.org/10.1002/tea.21147
  24. Lee, S. & Kim, H. B. (2014). Exploring secondary students’ epistemological features depending on the evaluation levels of the group model on blood circulation. Science & Education, 23(5), 1075-1099. https://doi.org/10.1007/s11191-013-9639-9
  25. Mendonça, P. C. C., & Justi, R. (2013). The relationships between modelling and argumentation from the perspective of the model of modelling diagram. International Journal of Science Education, 35(14), 2407-2434. https://doi.org/10.1080/09500693.2013.811615
  26. Morrison, M,, & Morgan, M. S. (1999). Models as mediating instruments. In M. S. Morgan, M. Morrison (Eds.), Models as mediators: perspectives on natural and social science (pp 10-37). Cambridge: Cambridge University Press.
  27. Ministry of Education (2011). Science curriculum. Ministry of Education 2011-361 [issue 9].
  28. National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.
  29. Nersessian, N. J. (1999). Model-based reasoning in conceptual change. In L. Magnani, N. J. Nersessian, P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp 5-22). Dordrecht: Kluwer Academic.
  30. NGSS Lead States(2013). Next Generation Science Standards; National Academy Press: Washington, DC.
  31. Nielsen, J. A. (2013). Dialectical features of students' argumentation: a critical review of argumentation studies in science education. Research in Science Education, 43, 371-393. https://doi.org/10.1007/s11165-011-9266-x
  32. Nunez-Oveido, M. C., Clement, J., & Rea-Ramirez, M. A. (2008). Developing complex mental models in biology through model evolution. In J. J. Clement & M. A. Rea-Ramirez (Eds.), Model based learning and instruction in science (pp. 173-193). Dordrecht: Springer.
  33. Nussbaum, E. M., & Edwards, O. (2011). Critical questions and argument stratagems: A framework for enhancing and analyzing students' reasoning practices. Journal of the Learning Sciences, 20(3), 443-488. https://doi.org/10.1080/10508406.2011.564567
  34. Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994-1020. https://doi.org/10.1002/tea.20035
  35. Passmore, C., & Svoboda, J. (2012). Exploring opportunities for argumentation in modelling classrooms. International Journal of Science Education, 34(10), 1535-1554. https://doi.org/10.1080/09500693.2011.577842
  36. Prokop, P., Fancovicova, J., & Tunnicliffe, S. D. (2009). The effect of type of instruction on expression of children's knowledge: How do children see the endocrine and urinary system? International Journal of Environmental & Science Education, 4(1), 75-93.
  37. Ryu, S., & Sandoval, W. A. (2012). Improvements to elementary children's epistemic understanding from sustained argumentation. Science Education, 96(3), 488-526. https://doi.org/10.1002/sce.21006
  38. Sandoval, W. A., & Çam, A.(2011). Elementary children's judgments of the epistemic status of sources of justification. Science & Eduacation, 38(3), 383-408.
  39. Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A., Fortus, D., Shwartz, Y.., Hug, B.., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654. https://doi.org/10.1002/tea.20311
  40. Soyibo, K. (1995). A review of some sources of students' misconceptions in biology. Singapore Journal of Education, 15(2), 1-11. https://doi.org/10.1080/02188799508548576
  41. Toulmin, S. E. (1958). The Use of Argument. Cambridge, UK: Cambridge University Press.
  42. Tunnicliffe, S. D. (2004). Where does the drink go? Primary Science Review, 85, 8-10.
  43. Walton, D. (1996). Argumentation schemes for presumptive reasoning. Mahwah: Lawrence Erlbaum Associates.
  44. Wellington, J., & Osborne, J. (2001). Language and literacy in science education. Buckingham, Philadelphia: Open University.
  45. Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941-967. https://doi.org/10.1002/sce.20259