References
- Barton, N.H., and Charlesworth, B. (1998). Why sex and recombination? Science 281, 1986-1990. https://doi.org/10.1126/science.281.5385.1986
- Baudat, F., Imai, Y., and de Massy, B. (2013). Meiotic recombination in mammals: localization and regulation. Nat. Rev. Genet. 14, 794-806. https://doi.org/10.1038/nrg3573
- Bevan, M.W., Uauy, C., Wulff, B.B.H., Zhou, J., Krasileva, K., and Clark, M.D. (2017). Genomic innovation for crop improvement. Nature 543, 346-354. https://doi.org/10.1038/nature22011
- Borts, R.H., and Haber, J.E. (1987). Meiotic recombination in yeast: alteration by multiple heterozygosities. Science 237, 1459-1465. https://doi.org/10.1126/science.2820060
- Cannavo, E., and Cejka, P. (2014). Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 514, 122-125. https://doi.org/10.1038/nature13771
- Cao, X., and Jacobsen, S.E. (2002). Role of the arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr. Biol. 12, 1138-1144. https://doi.org/10.1016/S0960-9822(02)00925-9
- Cao, X., Aufsatz, W., Zilberman, D., Mette, M.F., Huang, M.S., Matzke, M., and Jacobsen, S.E. (2003). Role of the DRM and CMT3 Methyltransferases in RNA-Directed DNA Methylation. Curr. Biol. 13, 2212-2217. https://doi.org/10.1016/j.cub.2003.11.052
- Chaney, L., Sharp, A.R., Evans, C.R., and Udall, J.A. (2016). Genome Mapping in Plant Comparative Genomics. Trends Plant Sci. 21, 770-780.
- Choi, K., and Henderson, I.R. (2015). Meiotic recombination hotspots - a comparative view. Plant J. 83, 52-61. https://doi.org/10.1111/tpj.12870
- Choi, K., Zhao, X., Kelly, K.A., Venn, O., Higgins, J.D., Yelina, N.E., Hardcastle, T.J., Ziolkowski, P.A., Copenhaver, G.P., Franklin, F.C.H., et al. (2013). Arabidopsis meiotic crossover hot spots overlap with H2A.Z nucleosomes at gene promoters. Nat. Genet. 45, 1327-1336. https://doi.org/10.1038/ng.2766
- Choi, K., Reinhard, C., Serra, H., Ziolkowski, P.A., Underwood, C.J., Zhao, X., Hardcastle, T.J., Yelina, N.E., Griffin, C., Jackson, M., et al. (2016). Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes. PLOS Genet. 12, e1006179. https://doi.org/10.1371/journal.pgen.1006179
- Choi, K., Zhao, X., Lambing, C., Underwood, C.J., Hardcastle, T.J., Serra, H., Tock, A.J., Ziolkowski, P.A., Yelina, N.E., Martienssen, R.A., et al. (2017). Nucleosomes and DNA methylation shape meiotic DSB frequency in Arabidopsis transposons and gene regulatory regions. bioRxiv 160911, https://doi.org/10.1101/160911.
- Choulet, F., Alberti, A., Theil, S., Glover, N., Barbe, V., Daron, J., Pingault, L., Sourdille, P., Couloux, A., Paux, E., et al. (2014). Structural and functional partitioning of bread wheat chromosome 3B. Science 345, 1249721. https://doi.org/10.1126/science.1249721
- Chuong, E.B., Elde, N.C., and Feschotte, C. (2016). Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 18, 71-86.
- Clement, J., and de Massy, B. (2017). Birth and death of a protein. Elife 6, e29502.
- Cloud, V., Chan, Y.-L., Grubb, J., Budke, B., and Bishop, D.K. (2012). Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis. Science 337, 1222-1225. https://doi.org/10.1126/science.1219379
- Crismani, W., Girard, C., Froger, N., Pradillo, M., Santos, J.L., Chelysheva, L., Copenhaver, G.P., Horlow, C., and Mercier, R. (2012). FANCM limits meiotic cxrossovers. Science 336, 1588-1590. https://doi.org/10.1126/science.1220381
- Da Ines, O., Degroote, F., Goubely, C., Amiard, S., Gallego, M.E., and White, C.I. (2013). Meiotic recombination in Arabidopsis is catalysed by DMC1, with RAD51 playing a supporting role. PLoS Genet. 9, e1003787. https://doi.org/10.1371/journal.pgen.1003787
- De Muyt, A., Zhang, L., Piolot, T., Kleckner, N., Espagne, E., and Zickler, D. (2014). E3 ligase Hei10: a multifaceted structure-based signaling molecule with roles within and beyond meiosis. Genes Dev. 28, 1111-1123. https://doi.org/10.1101/gad.240408.114
- Deng, Y., Zhai, K., Xie, Z., Yang, D., Zhu, X., Liu, J., Wang, X., Qin, P., Yang, Y., Zhang, G., et al. (2017). Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355, 962-965. https://doi.org/10.1126/science.aai8898
- Doudna, J.A., and Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096. https://doi.org/10.1126/science.1258096
- Du, J., Zhong, X., Bernatavichute, Y. V, Stroud, H., Feng, S., Caro, E., Vashisht, A.A., Terragni, J., Chin, H.G., Tu, A., et al. (2012). Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Cell 151, 167-180. https://doi.org/10.1016/j.cell.2012.07.034
- Emmanuel, E., Yehuda, E., Melamed-Bessudo, C., Avivi-Ragolsky, N., and Levy, A.A. (2006). The role of AtMSH2 in homologous recombination in Arabidopsis thaliana. EMBO Rep. 7, 100-105. https://doi.org/10.1038/sj.embor.7400577
- Fernandes, J., Duhamel, M., Seguela-Arnaud, M., Froger, N., Girard, C., Choinard, S., De Winne, N., De Jaeger, G., Gevaert, K., Guerois, R., et al. (2017a). FIGL1 and its novel partner FLIP form a conserved complex that regulates homologous recombination. bioRxiv 159657, https://doi.org/10.1101/159657.
- Fernandes, J.B., Seguela-Arnaud, M., Larcheveque, C., Lloyd, A.H., and Mercier, R. (2017b). Unleashing meiotic crossovers in hybrid plants. bioRxiv 159640, https://doi.org/10.1101/159640.
- Fowler, K.R., Sasaki, M., Milman, N., Keeney, S., and Smith, G.R. (2014). Evolutionarily diverse determinants of meiotic DNA break and recombination landscapes across the genome. Genome Res. 24, 1650-1664. https://doi.org/10.1101/gr.172122.114
- Garcia, V., Phelps, S.E.L., Gray, S., and Neale, M.J. (2011). Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479, 241-244. https://doi.org/10.1038/nature10515
- Girard, C., Crismani, W., Froger, N., Mazel, J., Lemhemdi, A., Horlow, C., and Mercier, R. (2014). FANCM-associated proteins MHF1 and MHF2, but not the other Fanconi anemia factors, limit meiotic crossovers. Nucleic Acids Res. 42, 9087-9095. https://doi.org/10.1093/nar/gku614
- Girard, C., Chelysheva, L., Choinard, S., Froger, N., Macaisne, N., Lehmemdi, A., Mazel, J., Crismani, W., and Mercier, R. (2015). AAA-ATPase FIDGETIN-LIKE 1 and Helicase FANCM Antagonize Meiotic Crossovers by Distinct Mechanisms. PLoS Genet. 11, e1005369. https://doi.org/10.1371/journal.pgen.1005369
- Gray, S., and Cohen, P.E. (2016). Control of meiotic crossovers: from double-strand break formation to designation. Annu. Rev. Genet. 50, 175-210. https://doi.org/10.1146/annurev-genet-120215-035111
- Grelon, M., Vezon, D., Gendrot, G., and Pelletier, G. (2001). AtSPO11-1 is necessary for efficient meiotic recombination in plants. EMBO J. 20, 589-600. https://doi.org/10.1093/emboj/20.3.589
- Hartung, F., Wurz-Wildersinn, R., Fuchs, J., Schubert, I., Suer, S., and Puchta, H. (2007). The catalytically active tyrosine residues of both SPO11-1 and SPO11-2 are required for meiotic double-strand break induction in Arabidopsis. Plant Cell 19, 3090-3099. https://doi.org/10.1105/tpc.107.054817
- Hellsten, U., Wright, K.M., Jenkins, J., Shu, S., Yuan, Y., Wessler, S.R., Schmutz, J., Willis, J.H., and Rokhsar, D.S. (2013). Fine-scale variation in meiotic recombination in Mimulus inferred from population shotgun sequencing. Proc. Natl. Acad. Sci. USA 110, 19478-19482. https://doi.org/10.1073/pnas.1319032110
- Hsu, P.D., Lander, E.S., and Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278. https://doi.org/10.1016/j.cell.2014.05.010
- Hunter, N. (2015). Meiotic Recombination: The essence of heredity. Cold Spring Harb. Perspect. Biol. 7, a016618.
- Johnson, L.M., Bostick, M., Zhang, X., Kraft, E., Henderson, I., Callis, J., and Jacobsen, S.E. (2007). The SRA methyl-cytosine-binding domain links DNA and histone methylation. Curr. Biol. 17, 379-384. https://doi.org/10.1016/j.cub.2007.01.009
- Kim, J.-S. (2016). Genome editing comes of age. Nat. Protoc. 11, 1573-1578. https://doi.org/10.1038/nprot.2016.104
- Kong, A., Thorleifsson, G., Stefansson, H., Masson, G., Helgason, A., Gudbjartsson, D.F., Jonsdottir, G.M., Gudjonsson, S.A., Sverrisson, S., Thorlacius, T., et al. (2008). Sequence variants in the RNF212 gene associate with genome-wide recombination rate. Science 319, 1398-1401. https://doi.org/10.1126/science.1152422
- Lam, I., and Keeney, S. (2014). Mechanism and regulation of meiotic recombination initiation. Cold Spring Harb. Perspect. Biol. 7, a016634.
- Lam, I., and Keeney, S. (2015). Nonparadoxical evolutionary stability of the recombination initiation landscape in yeast. Science 350, 932-937. https://doi.org/10.1126/science.aad0814
- Lambing, C., Franklin, F.C.H., and Wang, C.-J.R. (2017). Understanding and manipulating meiotic recombination in plants. Plant Physiol. 173, 1530-1542. https://doi.org/10.1104/pp.16.01530
- Lange, J., Yamada, S., Tischfield, S.E., Pan, J., Kim, S., Zhu, X., Socci, N.D., Jasin, M., and Keeney, S. (2016). The landscape of mouse meiotic double-strand break formation, processing, and repair. Cell 167, 695-708. https://doi.org/10.1016/j.cell.2016.09.035
- Lichten, M., and Goldman, a S. (1995). Meiotic recombination hotspots. Annu. Rev. Genet. 29, 423-444. https://doi.org/10.1146/annurev.ge.29.120195.002231
- Lindroth, A.M., Cao, X., Jackson, J.P., Zilberman, D., McCallum, C.M., Henikoff, S., and Jacobsen, S.E. (2001). Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292, 2077-2080. https://doi.org/10.1126/science.1059745
- Lippman, Z., Gendrel, A.-V., Black, M., Vaughn, M.W., Dedhia, N., McCombie, W.R., Lavine, K., Mittal, V., May, B., Kasschau, K.D., et al. (2004). Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471-476. https://doi.org/10.1038/nature02651
- Lister, R., O'Malley, R.C., Tonti-Filippini, J., Gregory, B.D., Berry, C.C., Millar, a H., and Ecker, J.R. (2008). Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133, 523-536. https://doi.org/10.1016/j.cell.2008.03.029
- Mayer, K.F.X., Waugh, R., Brown, J.W.S., Schulman, A., Langridge, P., Platzer, M., Fincher, G.B., Muehlbauer, G.J., Sato, K., Close, T.J., et al. (2012). A physical, genetic and functional sequence assembly of the barley genome. Nature 491, 711-716. https://doi.org/10.1038/nature11543
- McClintock, B. (1956). Controlling elements and the gene. Cold Spring Harb. Symp. Quant. Biol. 21, 197-216.
- Melamed-Bessudo, C., and Levy, A.A. (2012). Deficiency in DNA methylation increases meiotic crossover rates in euchromatic but not in heterochromatic regions in Arabidopsis. Proc. Natl. Acad. Sci. USA. 109, E981-988. https://doi.org/10.1073/pnas.1120742109
- Mercier, R., Mezard, C., Jenczewski, E., Macaisne, N., and Grelon, M. (2015). The molecular biology of meiosis in plants. Annu. Rev. Plant Biol. 66, 297-327. https://doi.org/10.1146/annurev-arplant-050213-035923
- Neale, M.J., Pan, J., and Keeney, S. (2005). Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436, 1053-1057. https://doi.org/10.1038/nature03872
- Pan, J., Sasaki, M., Kniewel, R., Murakami, H., Blitzblau, H.G., Tischfield, S.E., Zhu, X., Neale, M.J., Jasin, M., Socci, N.D., et al. (2011). A hierarchical combination of factors shapes the genomewide topography of yeast meiotic recombination initiation. Cell 144, 719-731. https://doi.org/10.1016/j.cell.2011.02.009
- Puchta, H. (2017). Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Curr. Opin. Plant Biol. 36, 1-8.
- Qiao, H., Prasada Rao, H.B.D., Yang, Y., Fong, J.H., Cloutier, J.M., Deacon, D.C., Nagel, K.E., Swartz, R.K., Strong, E., Holloway, J.K., et al. (2014). Antagonistic roles of ubiquitin ligase HEI10 and SUMO ligase RNF212 regulate meiotic recombination. Nat. Genet. 46, 194-199. https://doi.org/10.1038/ng.2858
- Sandor, C., Li, W., Coppieters, W., Druet, T., Charlier, C., and Georges, M. (2012). Genetic variants in REC8, RNF212, and PRDM9 influence male recombination in cattle. PLoS Genet. 8, e1002854. https://doi.org/10.1371/journal.pgen.1002854
- Sasaki, M., Lange, J., and Keeney, S. (2010). Genome destabilization by homologous recombination in the germline. Nat. Rev. Mol. Cell Biol. 11, 182-195. https://doi.org/10.1038/nrm2849
-
Seguela-Arnaud, M., Crismani, W., Larcheveque, C., Mazel, J., Froger, N., Choinard, S., Lemhemdi, A., Macaisne, N., Van Leene, J., Gevaert, K., et al. (2015). Multiple mechanisms limit meiotic crossovers:
$TOP3{\alpha}$ and two BLM homologs antagonize crossovers in parallel to FANCM. Proc. Natl. Acad. Sci. USA 112, 4713-4718. https://doi.org/10.1073/pnas.1423107112 -
Seguela-Arnaud, M., Choinard, S., Larcheveque, C., Girard, C., Froger, N., Crismani, W., and Mercier, R. (2017). RMI1 and
$TOP3{\alpha}$ limit meiotic CO formation through their C-terminal domains. Nucleic Acids Res. 45, 1860-1871. - Serra, H., Lambing, C., Griffin, C.H., Topp, S.D., Seguela-Arnaud, M., Fernandes, J., Mercier, R., and Henderson, I.R. (2017). Massive crossover elevation via combination of HEI10 and recq4a recq4b during Arabidopsis meiosis. bioRxiv 159764, https://doi.org/10.1101/159764.
- Singhal, S., Leffler, E.M., Sannareddy, K., Turner, I., Venn, O., Hooper, D.M., Strand, A.I., Li, Q., Raney, B., Balakrishnan, C.N., et al. (2015). Stable recombination hotspots in birds. Science 350, 928-932. https://doi.org/10.1126/science.aad0843
- Slotkin, R.K., and Martienssen, R. (2007). Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet. 8, 272-285.
- Soyk, S., Lemmon, Z.H., Oved, M., Fisher, J., Liberatore, K.L., Park, S.J., Goren, A., Jiang, K., Ramos, A., van der Knaap, E., et al. (2017). Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell 169, 1142-1155. https://doi.org/10.1016/j.cell.2017.04.032
- Stroud, H., Greenberg, M.V.C., Feng, S., Bernatavichute, Y. V, and Jacobsen, S.E. (2013). Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152, 352-364. https://doi.org/10.1016/j.cell.2012.10.054
- Stroud, H., Do, T., Du, J., Zhong, X., Feng, S., Johnson, L., Patel, D.J., and Jacobsen, S.E. (2014). Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat. Struct. Mol. Biol. 21, 64-72. https://doi.org/10.1038/nsmb.2735
- Tomato Genome Consortium (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 635-641. https://doi.org/10.1038/nature11119
- Underwood, C.J., Henderson, I.R., and Martienssen, R.A. (2017a). Genetic and epigenetic variation of transposable elements in Arabidopsis. Curr. Opin. Plant Biol. 36, 135-141. https://doi.org/10.1016/j.pbi.2017.03.002
- Underwood, C.J., Choi, K., Lambing, C., Zhao, X., Serra, H., Borges, F., Simorowski, J., Ernst, E., Jacob, Y., Henderson, I.R., et al. (2017b). Epigenetic activation of meiotic recombination in Arabidopsis centromeres via loss of H3K9me2 and non-CG DNA methylation. bioRxiv 160929, https://doi.org/10.1101/160929.
- Villeneuve, A.M., Hillers, K.J., Duffy, J.B., Kemphues, K.J., Villeneuve, A.M., Khodosh, R., and Hawley, R.S. (2001). Whence meiosis? Cell 106, 647-650. https://doi.org/10.1016/S0092-8674(01)00500-1
- Vrielynck, N., Chambon, A., Vezon, D., Pereira, L., Chelysheva, L., De Muyt, A., Mezard, C., Mayer, C., and Grelon, M. (2016). A DNA topoisomerase VI-like complex initiates meiotic recombination. Science 351, 939-943. https://doi.org/10.1126/science.aad5196
- Wijnker, E., Velikkakam James, G., Ding, J., Becker, F., Klasen, J.R., Rawat, V., Rowan, B.A., de Jong, D.F., de Snoo, C.B., Zapata, L., et al. (2013). The genomic landscape of meiotic crossovers and gene conversions in Arabidopsis thaliana. Elife 2, e01426.
- Wolter, F., and Puchta, H. (2017). Knocking out consumer concerns and regulator's rules: efficient use of CRISPR/Cas ribonucleoprotein complexes for genome editing in cereals. Genome Biol. 18, 43. https://doi.org/10.1186/s13059-017-1179-1
- Yelagandula, R., Stroud, H., Holec, S., Zhou, K., Feng, S., Zhong, X., Muthurajan, U.M., Nie, X., Kawashima, T., Groth, M., et al. (2014). The histone variant H2A.W defines heterochromatin and promotes chromatin condensation in Arabidopsis. Cell 158, 98-109. https://doi.org/10.1016/j.cell.2014.06.006
- Yelina, N.E., Choi, K., Chelysheva, L., Macaulay, M., de Snoo, B., Wijnker, E., Miller, N., Drouaud, J., Grelon, M., Copenhaver, G.P., et al. (2012). Epigenetic remodeling of meiotic crossover frequency in Arabidopsis thaliana DNA methyltransferase mutants. PLoS Genet. 8, e1002844. https://doi.org/10.1371/journal.pgen.1002844
- Yelina, N.E., Lambing, C., Hardcastle, T.J., Zhao, X., Santos, B., and Henderson, I.R. (2015). DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis. Genes Dev. 29, 2183-2202. https://doi.org/10.1101/gad.270876.115
- Yin, K., Gao, C., and Qiu, J.-L. (2017). Progress and prospects in plant genome editing. Nat. Plants 3, 17107. https://doi.org/10.1038/nplants.2017.107
- Zemach, A., Kim, M.Y., Hsieh, P.-H., Coleman-Derr, D., Eshed-Williams, L., Thao, K., Harmer, S.L., and Zilberman, D. (2013). The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153, 193-205. https://doi.org/10.1016/j.cell.2013.02.033
- Ziolkowski, P.A., Berchowitz, L.E., Lambing, C., Yelina, N.E., Zhao, X., Kelly, K.A., Choi, K., Ziolkowska, L., June, V., Sanchez-Moran, E., et al. (2015). Juxtaposition of heterozygous and homozygous regions causes reciprocal crossover remodelling via interference during Arabidopsis meiosis. Elife 4, e03708.
- Ziolkowski, P.A., Underwood, C.J., Lambing, C., Martinez-Garcia, M., Lawrence, E.J., Ziolkowska, L., Griffin, C., Choi, K., Franklin, F.C.H., Martienssen, R.A., et al. (2017). Natural variation and dosage of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination. Genes Dev. 31, 306-317. https://doi.org/10.1101/gad.295501.116
Cited by
- Where to Cross Over? Defining Crossover Sites in Plants vol.9, pp.None, 2018, https://doi.org/10.3389/fgene.2018.00609
- A Co-Expression Network in Hexaploid Wheat Reveals Mostly Balanced Expression and Lack of Significant Gene Loss of Homeologous Meiotic Genes Upon Polyploidization vol.10, pp.None, 2017, https://doi.org/10.3389/fpls.2019.01325
- Comparative meiosis and cytogenomic analysis in euploid and aneuploid hybrids of Urochloa P. Beauv vol.27, pp.4, 2017, https://doi.org/10.1007/s10577-019-09616-y
- Structural Aspects of DNA Repair and Recombination in Crop Improvement vol.11, pp.None, 2017, https://doi.org/10.3389/fgene.2020.574549
- A dCas9-Based System Identifies a Central Role for Ctf19 in Kinetochore-Derived Suppression of Meiotic Recombination vol.216, pp.2, 2017, https://doi.org/10.1534/genetics.120.303384
- Advanced domestication: harnessing the precision of gene editing in crop breeding vol.19, pp.4, 2017, https://doi.org/10.1111/pbi.13576