DOI QR코드

DOI QR Code

Advances towards Controlling Meiotic Recombination for Plant Breeding

  • Choi, Kyuha (Department of Life Sciences, Pohang University of Science and Technology)
  • Received : 2017.08.22
  • Accepted : 2017.11.17
  • Published : 2017.11.30

Abstract

Meiotic homologous recombination generates new combinations of preexisting genetic variation and is a crucial process in plant breeding. Within the last decade, our understanding of plant meiotic recombination and genome diversity has advanced considerably. Innovation in DNA sequencing technology has led to the exploration of high-resolution genetic and epigenetic information in plant genomes, which has helped to accelerate plant breeding practices via high-throughput genotyping, and linkage and association mapping. In addition, great advances toward understanding the genetic and epigenetic control mechanisms of meiotic recombination have enabled the expansion of breeding programs and the unlocking of genetic diversity that can be used for crop improvement. This review highlights the recent literature on plant meiotic recombination and discusses the translation of this knowledge to the manipulation of meiotic recombination frequency and location with regards to crop plant breeding.

Keywords

References

  1. Barton, N.H., and Charlesworth, B. (1998). Why sex and recombination? Science 281, 1986-1990. https://doi.org/10.1126/science.281.5385.1986
  2. Baudat, F., Imai, Y., and de Massy, B. (2013). Meiotic recombination in mammals: localization and regulation. Nat. Rev. Genet. 14, 794-806. https://doi.org/10.1038/nrg3573
  3. Bevan, M.W., Uauy, C., Wulff, B.B.H., Zhou, J., Krasileva, K., and Clark, M.D. (2017). Genomic innovation for crop improvement. Nature 543, 346-354. https://doi.org/10.1038/nature22011
  4. Borts, R.H., and Haber, J.E. (1987). Meiotic recombination in yeast: alteration by multiple heterozygosities. Science 237, 1459-1465. https://doi.org/10.1126/science.2820060
  5. Cannavo, E., and Cejka, P. (2014). Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 514, 122-125. https://doi.org/10.1038/nature13771
  6. Cao, X., and Jacobsen, S.E. (2002). Role of the arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr. Biol. 12, 1138-1144. https://doi.org/10.1016/S0960-9822(02)00925-9
  7. Cao, X., Aufsatz, W., Zilberman, D., Mette, M.F., Huang, M.S., Matzke, M., and Jacobsen, S.E. (2003). Role of the DRM and CMT3 Methyltransferases in RNA-Directed DNA Methylation. Curr. Biol. 13, 2212-2217. https://doi.org/10.1016/j.cub.2003.11.052
  8. Chaney, L., Sharp, A.R., Evans, C.R., and Udall, J.A. (2016). Genome Mapping in Plant Comparative Genomics. Trends Plant Sci. 21, 770-780.
  9. Choi, K., and Henderson, I.R. (2015). Meiotic recombination hotspots - a comparative view. Plant J. 83, 52-61. https://doi.org/10.1111/tpj.12870
  10. Choi, K., Zhao, X., Kelly, K.A., Venn, O., Higgins, J.D., Yelina, N.E., Hardcastle, T.J., Ziolkowski, P.A., Copenhaver, G.P., Franklin, F.C.H., et al. (2013). Arabidopsis meiotic crossover hot spots overlap with H2A.Z nucleosomes at gene promoters. Nat. Genet. 45, 1327-1336. https://doi.org/10.1038/ng.2766
  11. Choi, K., Reinhard, C., Serra, H., Ziolkowski, P.A., Underwood, C.J., Zhao, X., Hardcastle, T.J., Yelina, N.E., Griffin, C., Jackson, M., et al. (2016). Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes. PLOS Genet. 12, e1006179. https://doi.org/10.1371/journal.pgen.1006179
  12. Choi, K., Zhao, X., Lambing, C., Underwood, C.J., Hardcastle, T.J., Serra, H., Tock, A.J., Ziolkowski, P.A., Yelina, N.E., Martienssen, R.A., et al. (2017). Nucleosomes and DNA methylation shape meiotic DSB frequency in Arabidopsis transposons and gene regulatory regions. bioRxiv 160911, https://doi.org/10.1101/160911.
  13. Choulet, F., Alberti, A., Theil, S., Glover, N., Barbe, V., Daron, J., Pingault, L., Sourdille, P., Couloux, A., Paux, E., et al. (2014). Structural and functional partitioning of bread wheat chromosome 3B. Science 345, 1249721. https://doi.org/10.1126/science.1249721
  14. Chuong, E.B., Elde, N.C., and Feschotte, C. (2016). Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 18, 71-86.
  15. Clement, J., and de Massy, B. (2017). Birth and death of a protein. Elife 6, e29502.
  16. Cloud, V., Chan, Y.-L., Grubb, J., Budke, B., and Bishop, D.K. (2012). Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis. Science 337, 1222-1225. https://doi.org/10.1126/science.1219379
  17. Crismani, W., Girard, C., Froger, N., Pradillo, M., Santos, J.L., Chelysheva, L., Copenhaver, G.P., Horlow, C., and Mercier, R. (2012). FANCM limits meiotic cxrossovers. Science 336, 1588-1590. https://doi.org/10.1126/science.1220381
  18. Da Ines, O., Degroote, F., Goubely, C., Amiard, S., Gallego, M.E., and White, C.I. (2013). Meiotic recombination in Arabidopsis is catalysed by DMC1, with RAD51 playing a supporting role. PLoS Genet. 9, e1003787. https://doi.org/10.1371/journal.pgen.1003787
  19. De Muyt, A., Zhang, L., Piolot, T., Kleckner, N., Espagne, E., and Zickler, D. (2014). E3 ligase Hei10: a multifaceted structure-based signaling molecule with roles within and beyond meiosis. Genes Dev. 28, 1111-1123. https://doi.org/10.1101/gad.240408.114
  20. Deng, Y., Zhai, K., Xie, Z., Yang, D., Zhu, X., Liu, J., Wang, X., Qin, P., Yang, Y., Zhang, G., et al. (2017). Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355, 962-965. https://doi.org/10.1126/science.aai8898
  21. Doudna, J.A., and Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096. https://doi.org/10.1126/science.1258096
  22. Du, J., Zhong, X., Bernatavichute, Y. V, Stroud, H., Feng, S., Caro, E., Vashisht, A.A., Terragni, J., Chin, H.G., Tu, A., et al. (2012). Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Cell 151, 167-180. https://doi.org/10.1016/j.cell.2012.07.034
  23. Emmanuel, E., Yehuda, E., Melamed-Bessudo, C., Avivi-Ragolsky, N., and Levy, A.A. (2006). The role of AtMSH2 in homologous recombination in Arabidopsis thaliana. EMBO Rep. 7, 100-105. https://doi.org/10.1038/sj.embor.7400577
  24. Fernandes, J., Duhamel, M., Seguela-Arnaud, M., Froger, N., Girard, C., Choinard, S., De Winne, N., De Jaeger, G., Gevaert, K., Guerois, R., et al. (2017a). FIGL1 and its novel partner FLIP form a conserved complex that regulates homologous recombination. bioRxiv 159657, https://doi.org/10.1101/159657.
  25. Fernandes, J.B., Seguela-Arnaud, M., Larcheveque, C., Lloyd, A.H., and Mercier, R. (2017b). Unleashing meiotic crossovers in hybrid plants. bioRxiv 159640, https://doi.org/10.1101/159640.
  26. Fowler, K.R., Sasaki, M., Milman, N., Keeney, S., and Smith, G.R. (2014). Evolutionarily diverse determinants of meiotic DNA break and recombination landscapes across the genome. Genome Res. 24, 1650-1664. https://doi.org/10.1101/gr.172122.114
  27. Garcia, V., Phelps, S.E.L., Gray, S., and Neale, M.J. (2011). Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479, 241-244. https://doi.org/10.1038/nature10515
  28. Girard, C., Crismani, W., Froger, N., Mazel, J., Lemhemdi, A., Horlow, C., and Mercier, R. (2014). FANCM-associated proteins MHF1 and MHF2, but not the other Fanconi anemia factors, limit meiotic crossovers. Nucleic Acids Res. 42, 9087-9095. https://doi.org/10.1093/nar/gku614
  29. Girard, C., Chelysheva, L., Choinard, S., Froger, N., Macaisne, N., Lehmemdi, A., Mazel, J., Crismani, W., and Mercier, R. (2015). AAA-ATPase FIDGETIN-LIKE 1 and Helicase FANCM Antagonize Meiotic Crossovers by Distinct Mechanisms. PLoS Genet. 11, e1005369. https://doi.org/10.1371/journal.pgen.1005369
  30. Gray, S., and Cohen, P.E. (2016). Control of meiotic crossovers: from double-strand break formation to designation. Annu. Rev. Genet. 50, 175-210. https://doi.org/10.1146/annurev-genet-120215-035111
  31. Grelon, M., Vezon, D., Gendrot, G., and Pelletier, G. (2001). AtSPO11-1 is necessary for efficient meiotic recombination in plants. EMBO J. 20, 589-600. https://doi.org/10.1093/emboj/20.3.589
  32. Hartung, F., Wurz-Wildersinn, R., Fuchs, J., Schubert, I., Suer, S., and Puchta, H. (2007). The catalytically active tyrosine residues of both SPO11-1 and SPO11-2 are required for meiotic double-strand break induction in Arabidopsis. Plant Cell 19, 3090-3099. https://doi.org/10.1105/tpc.107.054817
  33. Hellsten, U., Wright, K.M., Jenkins, J., Shu, S., Yuan, Y., Wessler, S.R., Schmutz, J., Willis, J.H., and Rokhsar, D.S. (2013). Fine-scale variation in meiotic recombination in Mimulus inferred from population shotgun sequencing. Proc. Natl. Acad. Sci. USA 110, 19478-19482. https://doi.org/10.1073/pnas.1319032110
  34. Hsu, P.D., Lander, E.S., and Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278. https://doi.org/10.1016/j.cell.2014.05.010
  35. Hunter, N. (2015). Meiotic Recombination: The essence of heredity. Cold Spring Harb. Perspect. Biol. 7, a016618.
  36. Johnson, L.M., Bostick, M., Zhang, X., Kraft, E., Henderson, I., Callis, J., and Jacobsen, S.E. (2007). The SRA methyl-cytosine-binding domain links DNA and histone methylation. Curr. Biol. 17, 379-384. https://doi.org/10.1016/j.cub.2007.01.009
  37. Kim, J.-S. (2016). Genome editing comes of age. Nat. Protoc. 11, 1573-1578. https://doi.org/10.1038/nprot.2016.104
  38. Kong, A., Thorleifsson, G., Stefansson, H., Masson, G., Helgason, A., Gudbjartsson, D.F., Jonsdottir, G.M., Gudjonsson, S.A., Sverrisson, S., Thorlacius, T., et al. (2008). Sequence variants in the RNF212 gene associate with genome-wide recombination rate. Science 319, 1398-1401. https://doi.org/10.1126/science.1152422
  39. Lam, I., and Keeney, S. (2014). Mechanism and regulation of meiotic recombination initiation. Cold Spring Harb. Perspect. Biol. 7, a016634.
  40. Lam, I., and Keeney, S. (2015). Nonparadoxical evolutionary stability of the recombination initiation landscape in yeast. Science 350, 932-937. https://doi.org/10.1126/science.aad0814
  41. Lambing, C., Franklin, F.C.H., and Wang, C.-J.R. (2017). Understanding and manipulating meiotic recombination in plants. Plant Physiol. 173, 1530-1542. https://doi.org/10.1104/pp.16.01530
  42. Lange, J., Yamada, S., Tischfield, S.E., Pan, J., Kim, S., Zhu, X., Socci, N.D., Jasin, M., and Keeney, S. (2016). The landscape of mouse meiotic double-strand break formation, processing, and repair. Cell 167, 695-708. https://doi.org/10.1016/j.cell.2016.09.035
  43. Lichten, M., and Goldman, a S. (1995). Meiotic recombination hotspots. Annu. Rev. Genet. 29, 423-444. https://doi.org/10.1146/annurev.ge.29.120195.002231
  44. Lindroth, A.M., Cao, X., Jackson, J.P., Zilberman, D., McCallum, C.M., Henikoff, S., and Jacobsen, S.E. (2001). Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292, 2077-2080. https://doi.org/10.1126/science.1059745
  45. Lippman, Z., Gendrel, A.-V., Black, M., Vaughn, M.W., Dedhia, N., McCombie, W.R., Lavine, K., Mittal, V., May, B., Kasschau, K.D., et al. (2004). Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471-476. https://doi.org/10.1038/nature02651
  46. Lister, R., O'Malley, R.C., Tonti-Filippini, J., Gregory, B.D., Berry, C.C., Millar, a H., and Ecker, J.R. (2008). Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133, 523-536. https://doi.org/10.1016/j.cell.2008.03.029
  47. Mayer, K.F.X., Waugh, R., Brown, J.W.S., Schulman, A., Langridge, P., Platzer, M., Fincher, G.B., Muehlbauer, G.J., Sato, K., Close, T.J., et al. (2012). A physical, genetic and functional sequence assembly of the barley genome. Nature 491, 711-716. https://doi.org/10.1038/nature11543
  48. McClintock, B. (1956). Controlling elements and the gene. Cold Spring Harb. Symp. Quant. Biol. 21, 197-216.
  49. Melamed-Bessudo, C., and Levy, A.A. (2012). Deficiency in DNA methylation increases meiotic crossover rates in euchromatic but not in heterochromatic regions in Arabidopsis. Proc. Natl. Acad. Sci. USA. 109, E981-988. https://doi.org/10.1073/pnas.1120742109
  50. Mercier, R., Mezard, C., Jenczewski, E., Macaisne, N., and Grelon, M. (2015). The molecular biology of meiosis in plants. Annu. Rev. Plant Biol. 66, 297-327. https://doi.org/10.1146/annurev-arplant-050213-035923
  51. Neale, M.J., Pan, J., and Keeney, S. (2005). Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436, 1053-1057. https://doi.org/10.1038/nature03872
  52. Pan, J., Sasaki, M., Kniewel, R., Murakami, H., Blitzblau, H.G., Tischfield, S.E., Zhu, X., Neale, M.J., Jasin, M., Socci, N.D., et al. (2011). A hierarchical combination of factors shapes the genomewide topography of yeast meiotic recombination initiation. Cell 144, 719-731. https://doi.org/10.1016/j.cell.2011.02.009
  53. Puchta, H. (2017). Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Curr. Opin. Plant Biol. 36, 1-8.
  54. Qiao, H., Prasada Rao, H.B.D., Yang, Y., Fong, J.H., Cloutier, J.M., Deacon, D.C., Nagel, K.E., Swartz, R.K., Strong, E., Holloway, J.K., et al. (2014). Antagonistic roles of ubiquitin ligase HEI10 and SUMO ligase RNF212 regulate meiotic recombination. Nat. Genet. 46, 194-199. https://doi.org/10.1038/ng.2858
  55. Sandor, C., Li, W., Coppieters, W., Druet, T., Charlier, C., and Georges, M. (2012). Genetic variants in REC8, RNF212, and PRDM9 influence male recombination in cattle. PLoS Genet. 8, e1002854. https://doi.org/10.1371/journal.pgen.1002854
  56. Sasaki, M., Lange, J., and Keeney, S. (2010). Genome destabilization by homologous recombination in the germline. Nat. Rev. Mol. Cell Biol. 11, 182-195. https://doi.org/10.1038/nrm2849
  57. Seguela-Arnaud, M., Crismani, W., Larcheveque, C., Mazel, J., Froger, N., Choinard, S., Lemhemdi, A., Macaisne, N., Van Leene, J., Gevaert, K., et al. (2015). Multiple mechanisms limit meiotic crossovers: $TOP3{\alpha}$ and two BLM homologs antagonize crossovers in parallel to FANCM. Proc. Natl. Acad. Sci. USA 112, 4713-4718. https://doi.org/10.1073/pnas.1423107112
  58. Seguela-Arnaud, M., Choinard, S., Larcheveque, C., Girard, C., Froger, N., Crismani, W., and Mercier, R. (2017). RMI1 and $TOP3{\alpha}$ limit meiotic CO formation through their C-terminal domains. Nucleic Acids Res. 45, 1860-1871.
  59. Serra, H., Lambing, C., Griffin, C.H., Topp, S.D., Seguela-Arnaud, M., Fernandes, J., Mercier, R., and Henderson, I.R. (2017). Massive crossover elevation via combination of HEI10 and recq4a recq4b during Arabidopsis meiosis. bioRxiv 159764, https://doi.org/10.1101/159764.
  60. Singhal, S., Leffler, E.M., Sannareddy, K., Turner, I., Venn, O., Hooper, D.M., Strand, A.I., Li, Q., Raney, B., Balakrishnan, C.N., et al. (2015). Stable recombination hotspots in birds. Science 350, 928-932. https://doi.org/10.1126/science.aad0843
  61. Slotkin, R.K., and Martienssen, R. (2007). Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet. 8, 272-285.
  62. Soyk, S., Lemmon, Z.H., Oved, M., Fisher, J., Liberatore, K.L., Park, S.J., Goren, A., Jiang, K., Ramos, A., van der Knaap, E., et al. (2017). Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell 169, 1142-1155. https://doi.org/10.1016/j.cell.2017.04.032
  63. Stroud, H., Greenberg, M.V.C., Feng, S., Bernatavichute, Y. V, and Jacobsen, S.E. (2013). Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152, 352-364. https://doi.org/10.1016/j.cell.2012.10.054
  64. Stroud, H., Do, T., Du, J., Zhong, X., Feng, S., Johnson, L., Patel, D.J., and Jacobsen, S.E. (2014). Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat. Struct. Mol. Biol. 21, 64-72. https://doi.org/10.1038/nsmb.2735
  65. Tomato Genome Consortium (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 635-641. https://doi.org/10.1038/nature11119
  66. Underwood, C.J., Henderson, I.R., and Martienssen, R.A. (2017a). Genetic and epigenetic variation of transposable elements in Arabidopsis. Curr. Opin. Plant Biol. 36, 135-141. https://doi.org/10.1016/j.pbi.2017.03.002
  67. Underwood, C.J., Choi, K., Lambing, C., Zhao, X., Serra, H., Borges, F., Simorowski, J., Ernst, E., Jacob, Y., Henderson, I.R., et al. (2017b). Epigenetic activation of meiotic recombination in Arabidopsis centromeres via loss of H3K9me2 and non-CG DNA methylation. bioRxiv 160929, https://doi.org/10.1101/160929.
  68. Villeneuve, A.M., Hillers, K.J., Duffy, J.B., Kemphues, K.J., Villeneuve, A.M., Khodosh, R., and Hawley, R.S. (2001). Whence meiosis? Cell 106, 647-650. https://doi.org/10.1016/S0092-8674(01)00500-1
  69. Vrielynck, N., Chambon, A., Vezon, D., Pereira, L., Chelysheva, L., De Muyt, A., Mezard, C., Mayer, C., and Grelon, M. (2016). A DNA topoisomerase VI-like complex initiates meiotic recombination. Science 351, 939-943. https://doi.org/10.1126/science.aad5196
  70. Wijnker, E., Velikkakam James, G., Ding, J., Becker, F., Klasen, J.R., Rawat, V., Rowan, B.A., de Jong, D.F., de Snoo, C.B., Zapata, L., et al. (2013). The genomic landscape of meiotic crossovers and gene conversions in Arabidopsis thaliana. Elife 2, e01426.
  71. Wolter, F., and Puchta, H. (2017). Knocking out consumer concerns and regulator's rules: efficient use of CRISPR/Cas ribonucleoprotein complexes for genome editing in cereals. Genome Biol. 18, 43. https://doi.org/10.1186/s13059-017-1179-1
  72. Yelagandula, R., Stroud, H., Holec, S., Zhou, K., Feng, S., Zhong, X., Muthurajan, U.M., Nie, X., Kawashima, T., Groth, M., et al. (2014). The histone variant H2A.W defines heterochromatin and promotes chromatin condensation in Arabidopsis. Cell 158, 98-109. https://doi.org/10.1016/j.cell.2014.06.006
  73. Yelina, N.E., Choi, K., Chelysheva, L., Macaulay, M., de Snoo, B., Wijnker, E., Miller, N., Drouaud, J., Grelon, M., Copenhaver, G.P., et al. (2012). Epigenetic remodeling of meiotic crossover frequency in Arabidopsis thaliana DNA methyltransferase mutants. PLoS Genet. 8, e1002844. https://doi.org/10.1371/journal.pgen.1002844
  74. Yelina, N.E., Lambing, C., Hardcastle, T.J., Zhao, X., Santos, B., and Henderson, I.R. (2015). DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis. Genes Dev. 29, 2183-2202. https://doi.org/10.1101/gad.270876.115
  75. Yin, K., Gao, C., and Qiu, J.-L. (2017). Progress and prospects in plant genome editing. Nat. Plants 3, 17107. https://doi.org/10.1038/nplants.2017.107
  76. Zemach, A., Kim, M.Y., Hsieh, P.-H., Coleman-Derr, D., Eshed-Williams, L., Thao, K., Harmer, S.L., and Zilberman, D. (2013). The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153, 193-205. https://doi.org/10.1016/j.cell.2013.02.033
  77. Ziolkowski, P.A., Berchowitz, L.E., Lambing, C., Yelina, N.E., Zhao, X., Kelly, K.A., Choi, K., Ziolkowska, L., June, V., Sanchez-Moran, E., et al. (2015). Juxtaposition of heterozygous and homozygous regions causes reciprocal crossover remodelling via interference during Arabidopsis meiosis. Elife 4, e03708.
  78. Ziolkowski, P.A., Underwood, C.J., Lambing, C., Martinez-Garcia, M., Lawrence, E.J., Ziolkowska, L., Griffin, C., Choi, K., Franklin, F.C.H., Martienssen, R.A., et al. (2017). Natural variation and dosage of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination. Genes Dev. 31, 306-317. https://doi.org/10.1101/gad.295501.116

Cited by

  1. Where to Cross Over? Defining Crossover Sites in Plants vol.9, pp.None, 2018, https://doi.org/10.3389/fgene.2018.00609
  2. A Co-Expression Network in Hexaploid Wheat Reveals Mostly Balanced Expression and Lack of Significant Gene Loss of Homeologous Meiotic Genes Upon Polyploidization vol.10, pp.None, 2017, https://doi.org/10.3389/fpls.2019.01325
  3. Comparative meiosis and cytogenomic analysis in euploid and aneuploid hybrids of Urochloa P. Beauv vol.27, pp.4, 2017, https://doi.org/10.1007/s10577-019-09616-y
  4. Structural Aspects of DNA Repair and Recombination in Crop Improvement vol.11, pp.None, 2017, https://doi.org/10.3389/fgene.2020.574549
  5. A dCas9-Based System Identifies a Central Role for Ctf19 in Kinetochore-Derived Suppression of Meiotic Recombination vol.216, pp.2, 2017, https://doi.org/10.1534/genetics.120.303384
  6. Advanced domestication: harnessing the precision of gene editing in crop breeding vol.19, pp.4, 2017, https://doi.org/10.1111/pbi.13576