DOI QR코드

DOI QR Code

Genotype x Environment Interaction and Stability Analysis for Potato Performance and Glycoalkaloid Content in Korea

유전형과 재배환경의 상호작용에 따른 감자 수량성과 글리코알카로이드 함량 변화

  • Kim, Su Jeong (Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration) ;
  • Sohn, Hwang Bae (Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration) ;
  • Lee, Yu Young (Crop Postharvest Technology Research Division, Department of Research Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Park, Min Woo (Hyundai Seed Co. Ltd) ;
  • Chang, Dong Chil (Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration) ;
  • Kwon, Oh Keun (Research Administration Division, Research Policy Bureau, Rural Development Administration) ;
  • Park, Young Eun (Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration) ;
  • Hong, Su Young (Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration) ;
  • Suh, Jong Taek (Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration) ;
  • Nam, Jung Hwan (Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration) ;
  • Jeong, Jin Cheol (Golden Seed Project, National Institute of Crop Science, Rural Development Administration) ;
  • Koo, Bon Cheol (Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Yul Ho (Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration)
  • 김수정 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 손황배 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 이유영 (농촌진흥청 국립식량과학원 수확후이용과) ;
  • 박민우 (농업회사법인 현대종묘(주)) ;
  • 장동칠 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 권오근 (농촌진흥청 연구정책국 연구운영과) ;
  • 박영은 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 홍수영 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 서종택 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 남정환 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 정진철 (농촌진흥청 국립식량과학원 골든시드프로젝트(GSP) 사업단) ;
  • 구본철 (농촌진흥청 국립식량과학원 고령지농업연구소) ;
  • 김율호 (농촌진흥청 국립식량과학원 고령지농업연구소)
  • Received : 2017.08.21
  • Accepted : 2017.11.27
  • Published : 2017.12.31

Abstract

The potato tuber is known as a rich source of essential nutrients, used throughout the world. Although potato-breeding programs share some priorities, the major objective is to increase the genetic potential for yield through breeding or to eliminate hazards that reduce yield. Glycoalkaloids, which are considered a serious hazard to human health, accumulate naturally in potatoes during growth, harvesting, transportation, and storage. Here, we used the AMMI (additive main effects and multiplicative interaction) and GGE (Genotype main effect and genotype by environment interaction) biplot model, to evaluate tuber yield stability and glycoalkaloid content in six potato cultivars across three locations during 2012/2013. The environment on tuber yield had the greatest effect and accounted for 33.0% of the total sum squares; genotypes accounted for 3.8% and $G{\times}E$ interaction accounted for 11.1% which is the nest highest contribution. Conversely, the genotype on glycoalkaloid had the greatest effect and accounted for 82.4% of the total sum squares), whereas environment and $G{\times}E$ effects on this trait accounted for only 0.4% and 3.7%, respectively. Furthermore, potato genotype 'Superior', which covers most of the cultivated area, exhibited high yield performance with stability. 'Goun', which showed lower glycoalkaloid content, was the most suitable and desirable genotype. Results showed that, while tuber yield was more affected by the environment, glycoalkaloid content was more dependent on genotype. Further, the use of the AMMI and GGE biplot model generated more interactive visuals, facilitated the identification of superior genotypes, and suggested decisions on a variety of recommendations for specific environments.

감자 6품종인 수미(SP), 대서(AT), 하령(HR), 고운(GU), 홍영(HY), 자영(JY)을 대상으로, 해발고도별로 재배환경이 다른 강릉(E1), 진부(E2), 대관령(E3) 지역에서 2012년과 2013년 재배하여 괴경 수량성과 글리코알카로이드(PGA) 함량을 평가하였다. 품종이 가지고 있는 유전적 특성은 품종 고유의 유전형(G)과 재배환경(E)과의 상호작용($G{\times}E$)을 거쳐 발현되므로 본 연구에서는 AMMI 모델과 GGE biplot 분석을 통해 지역별 수량성과 PGA 함량 변화 양상을 검토하였다. 1. 감자 수량은 재배환경과 상호작용이 차지하는 비율이 높고, PGA 함량은 유전형(품종)의 효과가 차지하는 비율이 높은 것으로 나타났다. 2. 지역별로 높은 수량을 나타내는데 적합한 품종으로 강릉에서 '수미', 진부에서 '고운', 대관령 에서 '하령'이었으며, 수량이 높으면서 생산 안정성을 보인 품종은 수미였다. 3. 지역별로 높은 PGA 함량을 보이는 품종으로 강릉에서 '하령', 진부에서 '대서', 대관령에서 '수미'이었으며, PGA 함량이 낮으면서 재배환경에 영향을 덜 받는 안정성이 뛰어난 품종은 '고운'이었다. 4. 감자 품종의 양적 농업 형질인 수량은 재배환경에 따라 차이를 보였으며, PGA 함량은 품종 고유의 형질 차이에 의해 다르게 나타났다. 5. 감자의 수량성을 확보하기 위해서는 재배 적지의 선정이 중요하고, PGA 함량을 낮추기 위해서는 저함유 품종 개발이 선행되어야 한다고 판단되었다.

Keywords

References

  1. Bejarano, L., E. Mignolet, E. Devaux, E. Carrasco, and Y. Larondelle. 2000. Glycoalkaloids in potato tubers: the effect of variety and drought stress on the ${\alpha}$-solanine and ${\alpha}$-chaconine contents of potatoes. J. Sci. Food Agri. 80 : 2096-2100. https://doi.org/10.1002/1097-0010(200011)80:14<2096::AID-JSFA757>3.0.CO;2-6
  2. Choi, H. D., H. C. Lee, S. S. Kim, Y.S. Kim, H. T. Lim, and G. H. Ryu. 2008. Nutrient components and physicochemical properties of new domestic potato cultivars. Korean J. Food Sci. Technol. 40 : 382-388.
  3. Dia, M, T. C. Wehner, R. Hassell, D. S. Price, G. E. Boyhan, S. Olson, S. King, A. R. Davis, and G. E. Tolla. 2016. Genotype $\times$ environment interaction and stability analysis for watermelon fruit yield in the United States. Crop Science 56 : 1645-1661. https://doi.org/10.2135/cropsci2015.10.0625
  4. Ezatolla, F., R. Mahnaz., M. J. Mohammad, and Z. Hassan. 2013. GGE Biplot analysis of genotypes $\times$ envrionemnt interaction in chick pea genoypes. Eur. J. E$\times$ p. Biol. 3 : 417-423.
  5. Fehr, W. R. 1987. Principal of cultivar development. Vol. 1 Theory and technique. Macmillan Publishing Company, New York. U.S.A.
  6. FAO/WHO (Food and Agriculture Organization and World Health Organization of the United Nations). 1999. Summary of evaluations performed by the joint FAO/WHO expert committee on food additives (JECFA). ILSI Press, Washington.
  7. Food and Agriculture Organization of the United Nations Statistics (FAOSTAT). 2017. http://www. faostat.org/
  8. Friedman, M. 2006. Potato glycoalkaloids and metabolites: Role in the plant and in the diet. J. Agri. Food Chem. 54 : 8655-8681. https://doi.org/10.1021/jf061471t
  9. Friedman, M. and G. McDonald. 1997. Potato glycoalkaloids: Chemistry, analysis, safety and plant physiology. Crit. Rev. Plant Sci. 16 : 55-132. https://doi.org/10.1080/07352689709701946
  10. Fufa, M. 2013. AMMI analysis of tuber yield of potato genotypes grown in bale, southeastern Ethiopia. Adv. Crop Sci. Tech. 1 : 120. Doi:10.4172/2329-8863.1000120
  11. Gauch, H. G. 1988. Model selection and validation for yield trials with interaction. Biometrics 44 : 705-715. https://doi.org/10.2307/2531585
  12. Gauch, H. G. 1992. Statistical analysis of reginal yield trials: AMMI analysis of factorial designs, Elsevier, Amsterdam, The Netherlands
  13. Gauch, H. G. and R. W. Zobel. 1997. Identifying megaenvironments and targeting genotypes. Crop Sci. 37 : 311-326. https://doi.org/10.2135/cropsci1997.0011183X003700020002x
  14. Grunenfelder, L. 2005. Physiological studies of light-induced greening in fresh market potatoes. MS thesis, Washington State University, Pullman, USA.
  15. Grunenfelder, L. A., L. O. Knowles, L. K. Hiller, and N. R. Knowles. 2006. Glycoalkaloid development during greening of fresh market potatoes (Solanum tuberosum L.). J. Agric. Food Chem. 54 : 5847-5854. https://doi.org/10.1021/jf0607359
  16. Kim, S. J. 2016. A Gift from God: Cooking with potatoes. Rural Development Administration, Gangneung, Korea. p. 69.
  17. Kim, S. J., H. B. Sohn, S. Y. Hong, J. H. Nam, D. C. Chang, J. T. Suh, and Y. H. Kim. 2017. Determination of greening and shelf life of potato based on washing and storage temperature conditions. Korean J. Crop Sci. 62 : 66-72. https://doi.org/10.7740/kjcs.2016.62.1.066
  18. Kim, S. J., H. B. Sohn, M. Mekapogu, O.K. Kwon, S. Y. Hong, J. H. Nam, Y. I. Jin, D. C. Chang, J. T. Suh, J. C. Jeong, and Y. H. Kim. 2016. Quality characteristics influenced by different packaging materials in washed potatoes through an integrated washing system. Korean J. Food Sci. Technol. 48 : 247-255. https://doi.org/10.9721/KJFST.2016.48.3.247
  19. Kim, Y. H., G. H. Kim, H. R. Ji, Y. Y. Lee, H. M. Park, O. K. Kwon, S. J. Kim, W. B. Sohn, Y. I. Jin, S. Y. Hong, J. H. Nam, K. B. Kweon, J. T. Suh, and J. C. Jeong. 2014. Glycoalkaloids content influenced by tuber parts and storage period in major potato cultivars of Korea. Korean J. Breed. Sci. 46 :209-217. https://doi.org/10.9787/KJBS.2014.46.3.209
  20. Kroonenberg, P. M. 1995. Introduction to biplots for GE tables. Res. Rep. 51. Dep. of Mathematics, Univ. of Queensland, Brisbane, Australia.
  21. Machado, R. M. D, M. C. F. Toledo, and L. C. Garcia. 2007. Effect of light and temperature on the formation of glycoalkaloids in potato tubers. Food Control 18 : 503-508. https://doi.org/10.1016/j.foodcont.2005.12.008
  22. Morris, S. C. and J. B. Petermann. 1985. Genetic and environmental effects of levels of glycoalkaloids in cultivars of potato (Solanum tuberosum L.). Food Chem. 18 : 271-282. https://doi.org/10.1016/0308-8146(85)90108-6
  23. Nam E. Y., G. Y. Lee, and S. G. Yoon. 2004. Study on statistical analysis techniques for genotype and environment interaction analysis. Rural Development Administration report. Rural Development Administration. pp. 262-276.
  24. National Climate Data Service System (NCDSS). 2016. http://sts.kma.go.kr. (in Korean)
  25. Navabi, A., R. C. Yang, J. Helm, and D. M. Spawer. 2006. Can spring wheat growing mega-environments in the northern great plain be dissected for representative locations or niche-adapted genotypes? Crop Sci. 46 : 1107-1116. https://doi.org/10.2135/cropsci2005.06-0159
  26. Park, M. W. 2017. Study on effect of genotype and environment interaction on tomato fruit characteristics. Gyeongsang National Univ. Ph. D. thesis.
  27. Park, M. W., Y. S. Chung, and S. H. Lee. 2016. Quality changes in tomato fruits caused by genotype and environment interactions. Horti. Sci. Technol. 35 : 361-372.
  28. Piepho, H. P. 1997. Analyzing genotype-environment data by mixed models with multiplicative effects. Biometrics 53 : 761-766. https://doi.org/10.2307/2533976
  29. Pourdad, S. S. and M. J. Moghaddam. 2013. Study on seed yield stability of sunflower inbred lines through GGE biplot. Hella 58 : 19-28.
  30. Purchase, J. L. 1997. Parametric analysis to described G $\times$ E interaction and yield stability in winter yield. Ph.D. Thesis. Department of Agronomy, Faculty of Agriculture, University of Orange Free State, Bloemfontein, South Africa. pp. 4-83.
  31. Roselló, S., A. M. Adalid, J. Cebolla-Cornejo, and F. Nuez. 2010. Evaluation of the genotype, environment and their interaction on carotenoid and ascorbic acid accumulation in tomato germplasm. J. Sci. Food Agric. 91 : 1014-1021.
  32. Reza, M., M. Armon, A. Shabani, and A. Daryaei. 2007. Identification of stability and adaptability in advanced durum genotypes using AMMI analysis. Asian J. Plant Sci. 6 : 1261-1268. https://doi.org/10.3923/ajps.2007.1261.1268
  33. Rincon, F., B. Johnson, J. Crossa, and S. Taba. 1997. Identifying subsets of maize accessions by three-mode principal component analysis. Crop Sci. 37 : 1936-1943. https://doi.org/10.2135/cropsci1997.0011183X003700060044x
  34. Rural Development Administration (RDA). 2016. Standard farming text -The potato. Rural Development Administration, Suwon, Korea. pp. 16-290.
  35. Rural Development Administration (RDA). 2014. The Potato: Guidance of agricultural technology-31. Rural Development Administration, Suwon, Korea. pp. 24-120.
  36. Sanford, L. L., K. L. Deahl, S. L. Sinden, and R. S. Kobayashi. 1995. Glycoalkaloid content in tubers of hybrid and backcross populations from a Solanum tuberosum ($\times$) chacoense cross. Am. Potato J. 72 : 261-271. https://doi.org/10.1007/BF02849280
  37. Shim, K.B., S. H. Shin, J. Y. Shon, S .G. Kang, W. H. Yang, and S. G. Heu. 2015. Interpretation of genotype $\times$ environment interaction of sesame yield using GGE biplot analysis. Korean J. Crop Sci. 6 : 349-354.
  38. Sneller, C. H., L. Kilgore-Norquest, and D. Dombek. 1997. Repeatability of yield stability statistics in soybean. Crop Sci. 37 : 383-390. https://doi.org/10.2135/cropsci1997.0011183X003700020013x
  39. Tolessa, T. T., G. Keneni, T. Sefera, M. Jarso, and Y. Bekele. 2013. Genotype $\times$ environment interaction and performance stability for grain yield in field pea (Pisum sativum L.) genotypes. Int. J. Plant Breed. pp. 117-123
  40. Vargas, M., J. Crossa, F. van Eeuwijk, K. D. Sayre, and M. Reynolds. 2001. Interpreting treatment $\times$ environment interaction in agronomy trials. Agron. J. 93 : 949-960. https://doi.org/10.2134/agronj2001.934949x
  41. Yan, W. 2001. GGE biplot : a window application for graphical analysis of multi-environmental data and other types of two-way data. Agron. J. 93 : 1111-1118. https://doi.org/10.2134/agronj2001.9351111x
  42. Yan, W. and L. A. Hunt. 1998. Genotype by environment interaction and crop yield. Plant Breed. Rev. 16 : 135-178.
  43. Yan, W. and L. A. Hunt, Q. Sheng, and Z. Szlavnies. 2000. Cultivar evaluation and mega-environment investigation based on GGE biplot. Crop Sci. 40 : 597-605. https://doi.org/10.2135/cropsci2000.403597x
  44. Yan, W. and I. Rajcan. 2002. Biplot analysis of test sites and trait relations of soybean in Ontario. Crop Sci. 42:11-20. https://doi.org/10.2135/cropsci2002.1100
  45. Yan, W. and N. A. Tinker. 2006. Biplot analysis of multi-environment trial data: principles and application. Candian J. Plant Sci. 86 : 623-645. https://doi.org/10.4141/P05-169
  46. Yan, W., M. S. Kang, B. M. S. Woods, and P. L. Cornelius. 2007. GGE Biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci. 47 : 641-653.
  47. Yang, C. I., S. J. Yang, Y. P. Jeoung, H. C. Choi, and Y. B. Shin. 2001. Genotype $\times$ environment interaction of rice yield in multi-location trials. Korean J. Crop Sci. 46 : 453-458.
  48. Zobel, R. W., M. J. Wright, and H. G. Gauch. 1988. Statistical analysis of a yield trial. Agron. J. 80 : 388-393. https://doi.org/10.2134/agronj1988.00021962008000030002x