DOI QR코드

DOI QR Code

Quality Characteristics and Antioxidant Potential of Seeds of Native Korean Persimmon Genotypes

  • Kim, Il-Doo (International Institute of Agricultural Research & Development, Kyungpook National University) ;
  • Dhungana, Sanjeev Kumar (School of Applied Biosciences, Kyungpook National University) ;
  • Kim, Hye-Ryun (School of Applied Biosciences, Kyungpook National University) ;
  • Shin, Dong-Hyun (School of Applied Biosciences, Kyungpook National University)
  • Received : 2017.09.08
  • Accepted : 2017.11.23
  • Published : 2017.12.31

Abstract

Persimmon seeds contain considerable amounts of minerals, amino and organic acids, natural antioxidants and phenolic compounds. The objective of this study was to investigate quality characteristics and antioxidant potential of Korean persimmon seeds. The pH (4.88-4.94), color values, contents of minerals, free amino acids, organic acids, and phenolic compounds and DPPH free radical scavenging potentials of persimmon seed extracts significantly (p < 0.05) varied with the genotypes. This study showed that the seeds could be used as a source of different mineral elements (47.14-85.07 mg/kg) without any measureable amount of heavy metals such as arsenic, cadmium, lead and mercury. Similarly, considerable amounts of organic (1550.13-2413.08 mg/kg) and essential amino (50.85-54.03 mg/kg) acids and total phenolic compounds ($1227.91-1307.78{\mu}g$ gallic acid equivalent/g) were also found in the seed extracts, indicating their potential food value as a natural antioxidant. Results of the present study imply that prethanol-A, a food preservative, can be used as an effective extraction to obtain the minerals, organic and free amino acids, and phenolic compounds from the persimmon seeds, which possess a big potential to be commercially used in food, cosmetic and pharmaceutical industries.

Keywords

References

  1. Ahn, H.S., T.I. Jeon, J.Y. Lee, S.G. Hwang, Y. Lim and D.K. Park. 2002. Antioxidative activity of persimmon and grape seed extract: in vitro and in vivo. Nutr. Res. 22:1265-1273. https://doi.org/10.1016/S0271-5317(02)00429-3
  2. Akter, M., M. Ahmed and J.B. Eun. 2010. Solvent effects on antioxidant properties of persimmon (Diospyros kaki L. cv. Daebong) seeds. Int. J. Food Sci. Technol. 45:2258-2264. https://doi.org/10.1111/j.1365-2621.2010.02400.x
  3. AOAC. 1995. Official methods of analysis of AOAC international. 16th ed. Methods 928.08, 991.36, 985.29, 920.153, 995.13, Arlington Virginia, USA: Association of Official Analytical Chemists.
  4. Ashoor, S.H. and J.M. Knox. 1982. Determination of organic acids in foods by high-performance liquid chromatography. J. Chromatogr. 229:288-292.
  5. Bibi, N., A.B. Khattak. 2007. Effect of modified atmosphere on methanol extractable phenolics of persimmon modified atmosphere effect on persiommon phenolics. Int. J. Food Sci. Technol. 42:185-189. https://doi.org/10.1111/j.1365-2621.2006.01201.x
  6. Bilal, S., A.L. Khan, M. Waqas, R. Shahzad, I.-D. Kim, I.J. Lee and D.-H. Shin. 2016. Biochemical constituents and in vitro antioxidant and anticholinesterase potential of seeds from Native Korean Persimmon Genotypes. Molecules 21:893. https://doi.org/10.3390/molecules21070893
  7. Bretanha, M.S., G.L. Dotto, J.C. Vaghetti, S.L. Dias, E.C. Lima and F.A. Pavan. 2016. Giombo persimmon seed (GPS) an alternative adsorbent for the removal Toluidine Blue dye from aqueous solutions. Desalin. Water Treat. 57(58):28474-28485. https://doi.org/10.1080/19443994.2016.1179223
  8. Chen, H., T. Chen, P. Giudici and F. Chen. 2016. Vinegar functions on health: Constituents, sources, and formation mechanisms. Compr. Rev. Food Sci. Food Saf. 15(6): 1124-1138. https://doi.org/10.1111/1541-4337.12228
  9. Cheung, L.M., P.C. Cheung and V.E. Ooi. 2003. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem. 81(2):249-255. https://doi.org/10.1016/S0308-8146(02)00419-3
  10. Dhakal, R., V. Bajpai and K. Baek. 2012. Production of GABA (${\gamma}$-aminobutyric acid) by microorganisms: a review. Braz. J. Microbiol. 43:1230-1241. https://doi.org/10.1590/S1517-83822012000400001
  11. Fukai, S., S. Tanimoto, A. Maeda, H. Fukuda, Y. Okada and M. Nomura. 2009. Pharmacological activity of compounds extracted from persimmon peel (Diospyros kaki Thunb.). J. Oleo Sci. 58(4):213-219. https://doi.org/10.5650/jos.58.213
  12. Gorinstein, S., M. Zemser, M. Weisz, S. Halevy, J. Deutsch, K. Tilis, D. Feintuch, N. Guerra, M. Fishman and E. Bartnikowska. 1994. Fluorometric analysis of phenolics in persimmons. Biosci. Biotechnol. Biochem. 58(6):1087-1092. https://doi.org/10.1271/bbb.58.1087
  13. Guendez, R., S. Kallithraka, D.P. Makris and P. Kefalas. 2005. An analytical survey of the polyphenols of seeds of varieties of grape (Vitis vinifera) cultivated in Greece: implications for exploitation as a source of value-added phytochemicals. Phytochem. Anal. 16(1):17-23. https://doi.org/10.1002/pca.804
  14. Jang, I.C., E.K. Jo, M.S. Bae, H.J. Lee, K.I. Jeon, E. Park, H.G. Yuk, G.H. Ahn and S.C. Lee. 2010. Antioxidant and antigenotoxic activities of different parts of persimmon (Diospyros kaki cv. Fuyu) fruit. J. Med. Plants Res. 4:155-160.
  15. Jang, I.C., W.G. Oh, G.H. Ahn, J.H. Lee and S.C. Lee. 2011. Antioxidant activity of 4 cultivars of persimmon fruit. Food Sci. Biotechnol. 20:71-77. https://doi.org/10.1007/s10068-011-0010-0
  16. Jayaprakasha, G.K., B. Girennavar and B.S. Patil. 2008. Radical scavenging activities of Rio Red grapefruits and Sour orange fruit extracts in different in vitro model systems. Bioresour. Technol. 99:4484-4494. https://doi.org/10.1016/j.biortech.2007.07.067
  17. Je, J.Y., P.J. Park, W.K. Jung and S.K. Kim. 2005. Amino acid changes in fermented oyster (Crassostrea gigas) sauce with fermentation periods. Food Chem. 91:15-18. https://doi.org/10.1016/j.foodchem.2004.05.061
  18. Jin, Y.O. and W.S. Song. 2012. Antioxidant activity of Pyrus serotina fruit in different cultivars and parts. Korean J. Plant Res. 25(4):498-503 (in Korean). https://doi.org/10.7732/kjpr.2012.25.4.498
  19. Kawase, M., N. Motohashi, K. Satoh, H. Sakagami, H. Nakashima, S. Tani, Y. Shirataki, T. Kurihara, G. Spengler, K. Wolfard and J. Molnar. 2003. Biological activity of persimmon (Diospyros kaki) peel extracts. Phytother. Res. 17(5):495-500. https://doi.org/10.1002/ptr.1183
  20. Kim, I.-D., J.W. Lee, S.J. Kim, J.W. Cho, S.K. Dhungana, Y.S. Lim and D.-H. Shin. 2014. Exogenous application of natural extracts of persimmon (Diospyros kaki Thunb.) can help in maintaining nutritional and mineral composition of dried persimmon. Afr. J. Biotechnol. 13:2231-2239. https://doi.org/10.5897/AJB2013.13503
  21. Kim, I.-D., S.K. Dhungana, H.-R. Kim, Y.-J. Choi and D.-H. Shin. 2017. Persimmon leaf and seed powders could enhance nutritional value and acceptance of green tea. Afr. J. Biotechnol. 16:1116-1122. https://doi.org/10.5897/AJB2017.15949
  22. Kim, I.-D., S.K. Dhungana, Y.-G. Chae, N.-K. Son and D.-H. Shin. 2016. Quality characteristics of 'Dongchul' persimmon (Diospyros kaki Thunb.) fruit grown in Gangwondo, Korea. Korean J. Plant Res. 29(3):313-321. https://doi.org/10.7732/kjpr.2016.29.3.313
  23. Krogsgaard-Larsen, P. 1989. GABA receptors. In Williams, M., R.A. Glennon and P.M.W.M. Timmermans (eds.), Receptor phamacology and function, Marcel dekker Inc., New York, NY (USA). pp. 349-383.
  24. Maisuthisakul, P., M. Suttajit and R. Pongsawatmanit. 2007. Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chem. 100:1409-1418. https://doi.org/10.1016/j.foodchem.2005.11.032
  25. Maksimovic, Z., D. Malencic and N. Kovacevic. 2005. Polyphenol contents and antioxidant activity of Maydis stigma extracts. Bioresour. Technol. 96:873-877. https://doi.org/10.1016/j.biortech.2004.09.006
  26. Mari, M., S. Bautista-Banos and D. Sivakumar. 2016. Decay control in the postharvest system: Role of microbial and plant volatile organic compounds. Postharvest Biol. Technol. 122:70-81. https://doi.org/10.1016/j.postharvbio.2016.04.014
  27. Mishra, S., A.B. Jha and R.S. Dubey. 2011. Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248:565-577. https://doi.org/10.1007/s00709-010-0210-0
  28. Mody, I., Y. De Koninck, T.S. Otis and I. Soltesz. 1994. Bridging the cleft at GABA synapses in the brain. Trends Neurosci. 17:517-525. https://doi.org/10.1016/0166-2236(94)90155-4
  29. Moghaddama, E.G., H.A. Moghaddamb and S. Piric. 2013. Genetic variation of selected Siah Mashhad sweet cherry genotypes grown under Mashhad environmental conditions in Iran. Crop Breeding J. 3:45-51.
  30. Mratinic, E., B. Popovski, T. Miloševic and M. Popovska. 2011. Analysis of morphological and pomological characteristics of apricot germplasm in FYR Macedonia. J. Agr. Sci. Tech. 13:1121-1134.
  31. Nikmaram, N., B.N. Dar, S. Roohinejad, M. Koubaa, F.J. Barba, G. Ralf and S.K. Johnson. 2017. Recent advances in ${\gamma}$-aminobutyric acid (GABA) properties in pulses: An overview. J. Sci. Food Agric. 97(9):2681-2689. https://doi.org/10.1002/jsfa.8283
  32. Oh, C.H. and S.H. Oh. 2004. Effect of germinated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apoptosis. J. Med. Food. 7:19-23. https://doi.org/10.1089/109662004322984653
  33. O'Shea, N., E.K. Arendt and E. Gallagher. 2012. Dietary fiber and phytochemical characteristics of fruit and vegetable by-products and their recent applications as novel ingredients in food products. Innovative Food Sci. Emerging Technol. 16:1-10. https://doi.org/10.1016/j.ifset.2012.06.002
  34. Prasad, K.N., B. Yang, S. Yang, Y. Chen, M. Zhao, M. Ashraf and Y. Jiang. 2009. Identification of phenolic compounds and appraisal of antioxidant and antityrosinase activities from litchi (Litchi sinensis Sonn.) seeds. Food Chem. 116:1-7. https://doi.org/10.1016/j.foodchem.2009.01.079
  35. Reeds, P.J. 2000. Dispensable and indispensable amino acids for humans. J. Nutr. 130(7): 1835S-1840S. https://doi.org/10.1093/jn/130.7.1835S
  36. Rice-Evans, C.A., N.J. Miller, G.P. Bolwell, P.M. Bramley and J.B. Pridham. 1995. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res. 22:375-383. https://doi.org/10.3109/10715769509145649
  37. Seo, D.H., K.M. Jung, S.J. Kim and K.M. Kim. 2013. Development of EST-SSR markers and analysis of genetic diversity using persimmon (Diospyros kaki Thunb) cultivars collecting from domestic. Korean J. Plant Res. 26(4):491-502 (in Korean). https://doi.org/10.7732/kjpr.2013.26.4.491
  38. Singleton, V.L., R. Orthofer and R.M. Lamuela-Raventos. 1999. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 299:152-178.
  39. Skujins, S. 1998. Handbook for ICP-AES (Varian-Vista). A short guide to Vista series. Version 1.0, VarianInt, AG. Zug., Switzerland: ICP-AES operation.
  40. Srivastava, S. and R.S. Dubey. 2011. Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth Regul. 64:1-16. https://doi.org/10.1007/s10725-010-9526-1
  41. Suzuki, T., S.H.F. Someya and M. Tanokura. 2005. Comparative study of catechin compositions in five Japanese persimmons (Diospyros kaki). Food Chem. 93:149-152. https://doi.org/10.1016/j.foodchem.2004.10.017
  42. Valentao, P., P.B. Andrade, J. Rangel, B. Ribeiro, B.M. Silva, P. Baptista and R.M. Seabra. 2005. Effect of the conservation procedure on the contents of phenolic compounds and organic acids in chanterella (Cantharellus cibarius) mushroom. J. Agric. Food Chem. 53:4925-4931. https://doi.org/10.1021/jf0580263
  43. Wang, X., R. Yang, X. Jin, Y. Zhou, Y. Han and Z. Gu. 2015. Distribution of phytic acid and associated catabolic enzymes in soybean sprouts and indoleacetic acid promotion of Zn, Fe, and Ca bioavailability. Food Sci. Biotechnol. 24:2161-2167. https://doi.org/10.1007/s10068-015-0288-4
  44. Yu, L., S. Haley, J. Perret, M. Harris, J. Wilson and M. Qian. 2002. Free radical scavenging properties of wheat extracts. J. Agric. Food Chem. 50:1619-1624. https://doi.org/10.1021/jf010964p

Cited by

  1. In Vitro Cytotoxicity against Human Cancer Cell and 3T3-L1 Cell, Total Polyphenol Content and DPPH Radical Scavenging of Codonopsis lanceolata according to the Concentration of Ethanol Solvent vol.31, pp.3, 2017, https://doi.org/10.7732/kjpr.2018.31.3.195
  2. Comparison of Total Polyphenol, Total Flavonoid Content and Antioxidant Activity of Codonopsis lanceolata Extracts Stored at Different Temperatures and for Different Durations vol.29, pp.3, 2017, https://doi.org/10.7856/kjcls.2018.29.3.361
  3. Anti-inflammatory and Antioxidant Effects on In Vitro Cultured Adventitious Root Extracts to Different Platycodon grandiflorum Flower Colors vol.30, pp.4, 2019, https://doi.org/10.7856/kjcls.2019.30.4.569
  4. Effect of extraction solvent on in vitro anti-inflammatory, antioxidant activity, total phenol and flavonoid contents in Codonopsis lanceolata vol.24, pp.2, 2021, https://doi.org/10.1007/s12892-020-00062-5