DOI QR코드

DOI QR Code

Characterization of Bacterial Community Dynamics during the Decomposition of Pig Carcasses in Simulated Soil Burial and Composting Systems

  • Ki, Bo-Min (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Kim, Yu Mi (Department of Chemical Engineering, Soongsil University) ;
  • Jeon, Jun Min (Green Environmental Complex Center) ;
  • Ryu, Hee Wook (Department of Chemical Engineering, Soongsil University) ;
  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
  • Received : 2017.09.18
  • Accepted : 2017.10.10
  • Published : 2017.12.28

Abstract

Soil burial is the most widely used disposal method for infected pig carcasses, but composting has gained attention as an alternative disposal method because pig carcasses can be decomposed rapidly and safely by composting. To understand the pig carcass decomposition process in soil burial and by composting, pilot-scale test systems that simulated soil burial and composting were designed and constructed in the field. The envelope material samples were collected using special sampling devices without disturbance, and bacterial community dynamics were analyzed by high-throughput pyrosequencing for 340 days. Based on the odor gas intensity profiles, it was estimated that the active and advanced decay stages were reached earlier by composting than by soil burial. The dominant bacterial communities in the soil were aerobic and/or facultatively anaerobic gram-negative bacteria such as Pseudomonas, Gelidibacter, Mucilaginibacter, and Brevundimonas. However, the dominant bacteria in the composting system were anaerobic, thermophilic, endospore-forming, and/or halophilic gram-positive bacteria such as Pelotomaculum, Lentibacillus, Clostridium, and Caldicoprobacter. Different dominant bacteria played important roles in the decomposition of pig carcasses in the soil and compost. This study provides useful comparative date for the degradation of pig carcasses in the soil burial and composting systems.

Keywords

References

  1. Yoon H, Yoon SS, Wee SH, Kim YJ, Kim B. 2012. Clinical manifestations of foot-and-mouth disease during the 2010/2011 epidemic in the Republic of Korea. Transbound. Emerg. Dis. 59: 517-525. https://doi.org/10.1111/j.1865-1682.2011.01304.x
  2. Hayama Y, Kimura Y, Yamamoto T, Kobayashi S, Tsutsui T. 2015. Potential risk associated with animal culling and disposal during the foot-and-mouth disease epidemic in Japan in 2010. Res. Vet. Sci. 102: 228-230. https://doi.org/10.1016/j.rvsc.2015.08.017
  3. OIE. 2017. World Animal Health Information Database (WAHID) Interface. Available at http://www.oie.int/animal-health-in-the-world/the-world-animal-health-information-system/data-after-2004-wahis-interface/. Accessed Sep. 30, 2017.
  4. Yoon H, Yoon SS, Kim YJ, Moon OK, Wee SH, Joo YS, et al. 2015. Epidemiology of the foot-and-mouth disease serotype O epidemic of November 2010 to April 2011 in the Republic of Korea. Transbound. Emerg. Dis. 62: 252-263. https://doi.org/10.1111/tbed.12109
  5. Gwyther CL, Williams AP, Golyshin PN, Edwards-Jones G, Jones DL. 2011. The environmental and biosecurity characteristics of livestock carcass disposal methods: a review. Waste Manag. 31: 767-778. https://doi.org/10.1016/j.wasman.2010.12.005
  6. Won SG, Park JY, Rahman MM, Park KH, Ra CS. 2016. Co-composting of swine mortalities with swine manure and sawdust. Compost Sci. Util. 24: 42-53. https://doi.org/10.1080/1065657X.2015.1055008
  7. Brasseur C, Dekeirsschieter J, Schotsmans EM, de Koning S, Wilson AS, Haubruge E, et al. 2012. Comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for the forensic study of cadaveric volatile organic compounds released in soil by buried decaying pig carcasses. J. Chromatogr. A 1255: 163-170. https://doi.org/10.1016/j.chroma.2012.03.048
  8. Chae JS, Jeon JM, Oh KC, Kim SD, Ryu HW. 2016. Decaying characteristics of pig carcass disposal by trench burial method using compost. J. Odor Indoor Environ. 15: 134-146. https://doi.org/10.15250/joie.2016.15.2.134
  9. Yuan Q, Snow DD, Bartelt-Hunt SL. 2013. Potential water quality impacts originating from land burial of cattle carcasses. Sci. Total Environ. 456-457: 246-253. https://doi.org/10.1016/j.scitotenv.2013.03.083
  10. Akdeniz N, Koziel JA, Ahn HK, Glanville TD, Crawford BP. 2010. Field scale evaluation of volatile organic compound production inside biosecure swine mortality composts. Waste Manag. 30: 1981-1988. https://doi.org/10.1016/j.wasman.2010.05.022
  11. Akdeniz N, Koziel JA, Ahn HK, Glanville TD, Crawford BP, Raman DR. 2010. Laboratory scale evaluation of volatile organic compound emissions as indication of swine carcass degradation inside biosecure composting units. Bioresour. Technol. 101: 71-78. https://doi.org/10.1016/j.biortech.2009.07.076
  12. Akdeniz N, Koziel JA, Glanville TD, Ahn H, Crawford BP. 2011. Air sampling methods for VOCs related to field-scale biosecure swine mortality composting. Bioresour. Technol. 102: 3599-3602. https://doi.org/10.1016/j.biortech.2010.10.100
  13. Glanville TD, Ahn H, Akdeniz N, Crawford BP, Koziel JA. 2016. Performance of a plastic-wrapped composting system for biosecure emergency disposal of disease-related swine mortalities. Waste Manag. 48: 483-491. https://doi.org/10.1016/j.wasman.2015.11.006
  14. Dekeirsschieter J, Verheggen F, Gohy M, Hubrecht F, Bourguignon L, Lognay G, et al. 2009. Cadaveric volatile organic compounds released by decaying pig carcasses (Sus domesticus L.) in different biotopes. Forensic Sci. Int. 189: 46-53. https://doi.org/10.1016/j.forsciint.2009.03.034
  15. Dekeirsschieter J, Stefanuto PH, Brasseur C, Haubruge E, Focant JF. 2012. Enhanced characterization of the smell of death by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGC-TOFMS). PLoS One 7: e39005. https://doi.org/10.1371/journal.pone.0039005
  16. Stadler S, Stefanuto PH, Brokl M, Forbes SL, Focant JF. 2012. Characterization of volatile organic compounds from human analogue decomposition using thermal desorption coupled to comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Anal. Chem. 85: 998-1005.
  17. Li L, Wang J, Wang Y. 2016. A comparative study of the decomposition of pig carcasses in a methyl methacrylate box and open air conditions. J. Forensic Leg. Med. 42: 92-95. https://doi.org/10.1016/j.jflm.2016.06.001
  18. Metcalf JL, Xu ZZ, Weiss S, Lax S, Van Treuren W, Hyde ER, et al. 2016. Microbial community assembly and metabolic function during mammalian corpse decomposition. Science 351: 158-162. https://doi.org/10.1126/science.aad2646
  19. Howard GT, Duos B, Watson-Horzelski EJ. 2010. Characterization of the soil microbial community associated with the decomposition of a swine carcass. Int. Biodeterior. Biodegradation 64: 300-304. https://doi.org/10.1016/j.ibiod.2010.02.006
  20. Olakanye AO, Thompson T, Ralebitso-Senior TK. 2014. Changes to soil bacterial profiles as a result of Sus scrofa domesticus decomposition. Forensic Sci. Int. 245: 101-106. https://doi.org/10.1016/j.forsciint.2014.10.002
  21. Bergmann R, Ralebitso-Senior TK, Thompson T. 2014. An RNA-based analysis of changes in biodiversity indices in response to Sus scrofa domesticus decomposition. Forensic Sci. Int. 241: 190-194. https://doi.org/10.1016/j.forsciint.2014.06.001
  22. Xu W, Reuter T, Xu Y, Hsu YH, Stanford K, McAllister TA. 2011. Field scale evaluation of bovine-specific DNA as an indicator of tissue degradation during cattle mortality composting. Bioresour. Technol. 102: 4800-4806. https://doi.org/10.1016/j.biortech.2011.01.037
  23. Metcalf JL, Parfrey LW, Gonzalez A, Lauber CL, Knights D, Ackermann G, et al. 2013. A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. Elife 2: e01104.
  24. Yang SH, Lim JS, Khan MA, Kim BS, Choi DY, Lee EY, et al. 2015. High-throughput nucleotide sequence analysis of diverse bacterial communities in leachates of decomposing pig carcasses. Genet. Mol. Biol. 38: 373-380. https://doi.org/10.1590/S1415-475738320140252
  25. Pechal JL, Crippen TL, Benbow ML, Tarone AM, Dowd S, Tomberlin JK. 2014. The potential use of bacterial community succession in forensics as described by high throughput metagenomic sequencing. Int. J. Legal Med. 128: 193-205. https://doi.org/10.1007/s00414-013-0872-1
  26. Lindblad L. 2007. Microbiological sampling of swine carcasses: a comparison of data obtained by swabbing with medical gauze and data collected routinely by excision at Swedish abattoirs. Int. J. Food Microbiol. 118: 180-185. https://doi.org/10.1016/j.ijfoodmicro.2007.07.009
  27. Hopkins D, Wiltshire P, Turner B. 2000. Microbial characteristics of soils from graves: an investigation at the interface of soil microbiology and forensic science. Appl. Soil Ecol. 14: 283-288. https://doi.org/10.1016/S0929-1393(00)00063-9
  28. Kim KH, Park SY. 2008. A comparative analysis of malodor samples between direct (olfactometry) and indirect (instrumental) methods. Atmos. Environ. 4: 5061-5070.
  29. Kim TG, Cho KS. 2012. Microbial community analysis of a methane-oxidizing biofilm using ribosomal tag pyrosequencing. J. Microbiol. Biotechnol. 22: 360-370. https://doi.org/10.4014/jmb.1109.09052
  30. Forbes SL, Perrault KA. 2014. Decompositiono odour profiling in the air and soil surrounding vertebrate carrion. PLoS One 9: e95107. https://doi.org/10.1371/journal.pone.0095107
  31. Ishikawa M, Ishizaki S, Yamamoto Y, Yamasato K. 2002. Paraliobacillus ryukyuensis gen. nov., sp. nov., a new gram-positive, slightly halophilic, extremely halotolerant, facultative anaerobe isolated from a decomposing marine alga. J. Gen. Appl. Microbiol. 48: 269-279. https://doi.org/10.2323/jgam.48.269
  32. Straif SC, Mbogo CN, Toure AM, Walker ED, Kaufman M, Toure YT, et al. 1998. Midgut bacteria in Anopheles gambiae and An. funestus (Diptera: Culicidae) from Kenya and Mali. J. Med. Entomol. 35: 222-226. https://doi.org/10.1093/jmedent/35.3.222
  33. Zhang DC, Margesin R. 2015. Gelidibacter sediminis sp. nov., isolated from a sediment sample of the Yellow Sea. Int. J. Syst. Evol. Microbiol. 65: 2304-2309. https://doi.org/10.1099/ijs.0.000256
  34. Yoon JH, Kang SJ, Park S, Oh TK. 2012. Mucilaginibacter litoreus sp. nov., isolated from marine sand. Int. J. Syst. Evol. Microbiol. 62: 2822-2827. https://doi.org/10.1099/ijs.0.034900-0
  35. Vodovar N, Vallenet D, Cruveiller S, Rouy Z, Barbe V, Acosta C, et al. 2006. Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat. Biotechnol. 24: 673-679. https://doi.org/10.1038/nbt1212
  36. Imachi H, Sakai S, Ohashi A, Harada H, Hanada S, Kamagata Y, et al. 2007. Pelotomaculum propionicicum sp. nov., an anaerobic, mesophilic, obligately syntrophic, propionate-oxidizing bacterium. Int. J. Syst. Evol. Microbiol. 57: 1487-1492. https://doi.org/10.1099/ijs.0.64925-0
  37. Yoon JH, Kang KH, Park YH, 2002. Lentibacillus salicampi gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt field in Korea. Int. J. Syst. Evol. Microbiol. 52: 2043-2048.
  38. Sukhumavasi J, Ohmiya K, Shimizu S, Ueno K. 1988. Clostridium josui sp. nov., a cellulolytic, moderate thermophilic species from Thai compost. Int. J. Syst. Evol. Microbiol. 38: 179-182.
  39. Holman DB, Hao X, Topp E, Yang HE, Alexander TW. 2016. Effect of co-composting cattle manure with construction and demolition waste on the archaeal, bacterial, and fungal microbiota, and on antimicrobial resistance determinants. PLoS One 11: e0157539. https://doi.org/10.1371/journal.pone.0157539
  40. Rappert S, Muller R. 2005. Odor compounds in waste gas emissions from agricultural operations and food industries. Waste Manag. 25: 887-907. https://doi.org/10.1016/j.wasman.2005.07.008
  41. Zhu J. 2000. A review of microbiology in swine manure odor control. Agric. Ecosyst. Environ. 78: 93-106. https://doi.org/10.1016/S0167-8809(99)00116-4
  42. Mandal S, Chatterjee S, Dam B, Roy P, Gupta SKD. 2007. The dimeric repressor SoxR binds cooperatively to the promoter(s) regulating expression of the sulfur oxidation (sox) operon of Pseudaminobacter salicylatoxidans KCT001. Microbiology 153: 80-91. https://doi.org/10.1099/mic.0.29197-0
  43. Tomita B, Inoue H, Chaya K, Nakamura A, Hamamura N, Ueno K, et al. 1987. Identification of dimethyl disulfide-forming bacteria isolated from activated sludge. Appl. Environ. Microbiol. 53: 1541-1547.
  44. Bouanane-Darenfed A, Fardeau ML, Gregoire P, Joseph M, Kebbouche-Gana S, Benayad T, et al. 2011. Caldicoprobacter algeriensis sp. nov. a new thermophilic anaerobic, xylanolytic bacterium isolated from an Algerian hot spring. Curr. Microbiol. 62: 826-832. https://doi.org/10.1007/s00284-010-9789-9
  45. Mackie RI, Stroot PG, Varel VH. 1998. Biochemical identification and biological origin of key odor components in livestock waste. J. Anim. Sci. 76: 1331-1342. https://doi.org/10.2527/1998.7651331x
  46. Spoelstra S. 1980. Origin of objectionable odorous components in piggery wastes and the possibility of applying indicator components for studying odour development. Agric. Environ. 5: 241-260. https://doi.org/10.1016/0304-1131(80)90004-1
  47. Beckmann S, Krüger M, Engelen B, Gorbushina AA, Cypionka H. 2011. Role of bacteria, archaea and fungi involved in methane release in abandoned coal mines. Geomicrobiol. J. 28: 347-358. https://doi.org/10.1080/01490451.2010.503258
  48. Hirano T, Kurosawa H, Nakamura K, Amano Y. 1996. Simultaneous removal of hydrogen sulfide and trimethylamine by a bacterial deodorant. J. Ferment. Bioeng. 81: 337-342. https://doi.org/10.1016/0922-338X(96)80587-3
  49. Gomez-Brandon M, Juarez MFD, Zangerle M, Insam H. 2016. Effects of digestate on soil chemical and microbiological properties: a comparative study with compost and vermicompost. J. Hazard. Mater. 302: 267-274. https://doi.org/10.1016/j.jhazmat.2015.09.067
  50. Wang P, Sun G, Jia Y, Meharg AA, Zhu Y. 2014. A review on completing arsenic biogeochemical cycle: microbial volatilization of arsines in environment. J. Environ. Sci. 26: 371-381. https://doi.org/10.1016/S1001-0742(13)60432-5
  51. Xing D, Ren N, Gong M, Li J, Li Q. 2005. Monitoring of microbial community structure and succession in the biohydrogen production reactor by denaturing gradient gel electrophoresis (DGGE). Sci. China C Life Sci. 48: 155-162. https://doi.org/10.1007/BF02879668
  52. Bertin L, Bettini C, Zanaroli G, Fraraccio S, Negroni A, Fava F. 2012. Acclimation of an anaerobic consortium capable of effective biomethanization of mechanically-sorted organic fraction of municipal solid waste through a semi-continuous enrichment procedure. J. Chem. Technol. Biotechnol. 87: 1312-1319. https://doi.org/10.1002/jctb.3809
  53. Niu Q, Takemura Y, Kubota K, Li YY. 2015. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: microbial community dynamics and process resilience. Waste Manage. 43: 114-122. https://doi.org/10.1016/j.wasman.2015.05.012

Cited by

  1. Extended local similarity analysis (eLSA) reveals unique associations between bacterial community structure and odor emission during pig carcasses decomposition vol.53, pp.8, 2017, https://doi.org/10.1080/10934529.2018.1439856
  2. Variations and Potential Factors of Gut Prokaryotic Microbiome During Spawning Migration in Coilia nasus vol.77, pp.10, 2017, https://doi.org/10.1007/s00284-020-02088-y
  3. Impact of Soil Microbes and Oxygen Availability on Bacterial Community Structure of Decomposing Poultry Carcasses vol.11, pp.10, 2017, https://doi.org/10.3390/ani11102937