DOI QR코드

DOI QR Code

Reactive Oxygen Species Depletion by Silibinin Stimulates Apoptosis-Like Death in Escherichia coli

  • Lee, Bin (School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Program), College of Natural Sciences, Kyungpook National University) ;
  • Lee, Dong Gun (School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Program), College of Natural Sciences, Kyungpook National University)
  • Received : 2017.10.23
  • Accepted : 2017.11.06
  • Published : 2017.12.28

Abstract

Silibinin is the major active component of silymarin, extracted from the medicinal plant Silybum marianum. Silibinin has potent antibacterial activity; however, the exact mechanism underlying its activity has not been elucidated. Here, we investigated the novel mechanism of silibinin against Escherichia coli. Time-kill kinetic assay showed that silibinin possess a bactericidal effect at minimal inhibitory concentration (MIC) and higher concentrations (2-and 4-fold MIC). At the membrane, depolarization and increased intracellular $Ca^{2+}$ levels were observed, considered as characteristics of bacterial apoptosis. Additionally, cells treated with MIC and higher concentrations showed apoptotic features like DNA fragmentation, phosphatidylserine exposure, and caspase-like protein expression. Generally, apoptotic death is closely related with ROS generation; however, silibinin did not induce ROS generation but acted as a scavenger of intracellular ROS. These results indicate that silibinin dose-dependently induces bacterial apoptosis-like death, which was affected by ROS depletion, suggesting that silibinin is a potential candidate for controlling bacteria.

Keywords

References

  1. Borges A, Saavedra MJ, Simoes M. 2015. Insights on antimicrobial resistance, biofilms and the use of phytochemicals as new antimicrobial agents. Curr. Med. Chem. 22: 2590-2614. https://doi.org/10.2174/0929867322666150530210522
  2. Shah PM. 2005. The need for new therapeutic agents: what is the pipeline? Clin. Microbiol. Infect. 11 Suppl 3: 36-42.
  3. Subramani R, Narayanasamy M, Feussner KD. 2017. Plant-derived antimicrobials to fight against multi-drug-resistant human pathogens. 3 Biotech 7: 172.
  4. Molyneux RJ, Lee ST, Gardner DR, Panter KE, James LF. 2007. Phytochemicals: the good, the bad and the ugly? Phytochemistry 68: 2973-2985. https://doi.org/10.1016/j.phytochem.2007.09.004
  5. Simoes M, Bennett RN, Rosa EA. 2009. Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Nat. Prod. Rep. 26: 746-757. https://doi.org/10.1039/b821648g
  6. Nagarajan S, Namasivayam N. 2014. Silibinin alleviates hyperlipidaemia, restores mucin content, modulates $TGF-{\beta}$ and fosters apoptosis in experimental rat colon carcinogenesis. J. Funct. Foods 11: 472-481. https://doi.org/10.1016/j.jff.2014.10.025
  7. Hu S, Zhang X, Chen F, Wang M. 2017. Dietary polyphenols as photoprotective agents against UV radiation. J. Funct. Foods 30: 108-118. https://doi.org/10.1016/j.jff.2017.01.009
  8. Cheung CW, Gibbons N, Johnson DW, Nicol DL. 2010. Silibinin - a promising new treatment for cancer. Anticancer Agents Med. Chem. 10: 186-195. https://doi.org/10.2174/1871520611009030186
  9. Abed I, Al-Moula R, Abdulhasan G. 2015. Antibacterial effect of flavonoids extracted from seeds of Silybum marianum against common pathogenic bacteria. World J. Exp. Biosci. 3: 36-39.
  10. de Oliveira DR, Tintino SR, Braga MF, Boligon AA, Athayde ML, Coutinho HD, et al. 2015. In vitro antimicrobial and modulatory activity of the natural products silymarin and silibinin. Biomed. Res. Int. 2015: 292797.
  11. Jung HJ, Lee DG. 2008. Synergistic antibacterial effect between silybin and N,N'-dicyclohexylcarbodiimide in clinical Pseudomonas aeruginosa isolates. J. Microbiol. 46: 462-467. https://doi.org/10.1007/s12275-008-0138-7
  12. Lee YS, Jang KA, Cha JD. 2012. Synergistic antibacterial effect between silibinin and antibiotics in oral bacteria. J. Biomed. Biotechnol. 2012: 618081.
  13. Yun DG, Lee DG. 2016. Silibinin triggers yeast apoptosis related to mitochondrial $Ca^{2+}$ influx in Candida albicans. Int. J. Biochem. Cell Biol. 80: 1-9. https://doi.org/10.1016/j.biocel.2016.09.008
  14. Hakansson AP, Roche-Hakansson H, Mossberg AK, Svanborg C. 2011. Apoptosis-like death in bacteria induced by HAMLET, a human milk lipid-protein complex. PLoS One 6: e17717. https://doi.org/10.1371/journal.pone.0017717
  15. Elmore S. 2007. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35: 495-516. https://doi.org/10.1080/01926230701320337
  16. Dwyer DJ, Camacho DM, Kohanski MA, Callura JM, Collins JJ. 2012. Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol. Cell 46: 561-572. https://doi.org/10.1016/j.molcel.2012.04.027
  17. Janion C. 2008. Inducible SOS response system of DNA repair and mutagenesis in Escherichia coli. Int. J. Biol. Sci. 4: 338-344.
  18. Little JW. 1991. Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. Biochimie 73: 411-421. https://doi.org/10.1016/0300-9084(91)90108-D
  19. Raghuraman H, Chattopadhyay A. 2007. Melittin: a membrane-active peptide with diverse functions. Biosci. Rep. 27: 189-223. https://doi.org/10.1007/s10540-006-9030-z
  20. Lee W, Kim KJ, Lee DG. 2014. A novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli. Biometals 27: 1191-1201. https://doi.org/10.1007/s10534-014-9782-z
  21. Dominguez DC. 2004. Calcium signalling in bacteria. Mol. Microbiol. 54: 291-297. https://doi.org/10.1111/j.1365-2958.2004.04276.x
  22. Martinez MM, Reif RD, Pappas D. 2010. Detection of apoptosis: a review of conventional and novel techniques. Anal. Methods 2: 996-1004. https://doi.org/10.1039/c0ay00247j
  23. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  24. Yun DG, Lee DG. 2016. Antibacterial activity of curcumin via apoptosis-like response in Escherichia coli. Appl. Microbiol. Biotechnol. 100: 5505-5514. https://doi.org/10.1007/s00253-016-7415-x
  25. Palomino OM, Gouveia NM, Ramos S, Martin MA, Goya L. 2017. Protective effect of Silybum marianum and silibinin on endothelial cells submitted to high glucose concentration. Planta Med. 83: 97-103.
  26. Li L, S un J , Xia S, T ian X, Cheserek MJ, Le G. 2016. Mechanism of antifungal activity of antimicrobial peptide APP, a cell-penetrating peptide derivative, against Candida albicans: intracellular DNA binding and cell cycle arrest. Appl. Microbiol. Biotechnol. 100: 3245-3253. https://doi.org/10.1007/s00253-015-7265-y
  27. Cerella C, Diederich M, Ghibelli L. 2010. The dual role of calcium as messenger and stressor in cell damage, death, and survival. Int. J. Cell Biol. 2010: 546163.
  28. Dominguez DC, Guragain M, Patrauchan M. 2015. Calcium binding proteins and calcium signaling in prokaryotes. Cell Calcium 57: 151-165. https://doi.org/10.1016/j.ceca.2014.12.006
  29. Dwyer DJ, Winkler JA. 2013. Identification and characterization of programmed cell death markers in bacterial models. Methods Mol. Biol. 1004: 145-159.
  30. Erental A, Kalderon Z, Saada A, Smith Y, Engelberg-Kulka H. 2014. Apoptosis-like death, an extreme SOS response in Escherichia coli. mBio 5: e01426-e01414.
  31. Sung WS, Lee DG. 2007. The candidacidal activity of indole-3-carbinol that binds with DNA. IUBMB Life 59: 408-412. https://doi.org/10.1080/15216540701422373
  32. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. 2007. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130: 797-810. https://doi.org/10.1016/j.cell.2007.06.049
  33. Muthuswamy S, Rupasinghe HV. 2007. Fruit phenolics as natural antimicrobial agents: selective antimicrobial activity of catechin, chlorogenic acid and phloridzin. J. Food Agric. Environ. 5: 81.
  34. Lee DG, Kim HK, Park Y, Park SC, Woo ER, Jeong HG, et al. 2003. Gram-positive bacteria specific properties of silybin derived from Silybum marianum. Arch. Pharm. Res. 26: 597-600. https://doi.org/10.1007/BF02976707
  35. Cushnie TPT, Lamb AJ. 2005. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 26: 343-356. https://doi.org/10.1016/j.ijantimicag.2005.09.002
  36. Specht KG, Rodgers MA. 1991. Plasma membrane depolarization and calcium influx during cell injury by photodynamic action. Biochim. Biophys. Acta 1070: 60-68. https://doi.org/10.1016/0005-2736(91)90146-Y
  37. Guo J, Lao Y, Chang D. 2009. Calcium and apoptosis, pp. 597-622. Handbook of Neurochemistry and Molecular Neurobiology. Springer, New York.
  38. Segawa K, Nagata S. 2015. An apoptotic 'eat me' signal: phosphatidylserine exposure. Trends Cell Biol. 25: 639-650. https://doi.org/10.1016/j.tcb.2015.08.003
  39. Crowley LC, Marfell BJ, Scott AP, Waterhouse NJ. 2016. Quantitation of apoptosis and necrosis by annexin V binding, propidium iodide uptake, and flow cytometry. Cold Spring Harb Protoc. 2016: pdb.prot087288.
  40. Grasl-Kraupp B, Ruttkay-Nedecky B, Koudelka H, Bukowska K, Bursch W, Schulte-Hermann R. 1995. In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note. Hepatology 21: 1465-1468.
  41. McIlwain DR, Berger T, Mak TW. 2013. Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol. 5: a008656.
  42. Madeo F, Herker E, Wissing S, Jungwirth H, Eisenberg T, Frohlich KU. 2004. Apoptosis in yeast. Curr. Opin. Microbiol. 7: 655-660. https://doi.org/10.1016/j.mib.2004.10.012
  43. Cox MM. 2007. Regulation of bacterial RecA protein function. Crit. Rev. Biochem. Mol. Biol. 42: 41-63. https://doi.org/10.1080/10409230701260258
  44. Silva MT. 2010. Secondary necrosis: the natural outcome of the complete apoptotic program. FEBS Lett. 584: 4491-4499. https://doi.org/10.1016/j.febslet.2010.10.046
  45. Jayaraman P, Sakharkar MK, Lim CS, Tang TH, Sakharkar KR. 2010. Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro. Int. J. Biol. Sci. 6: 556-568.
  46. Surai P. 2015. Silymarin as a natural antioxidant: an overview of the current evidence and perspectives. Antioxidants 4: 204-247. https://doi.org/10.3390/antiox4010204
  47. Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, et al. 2011. ROS signaling: the new wave? Trends Plant Sci. 16: 300-309. https://doi.org/10.1016/j.tplants.2011.03.007
  48. Ray PD, Huang B-W, Tsuji Y. 2012. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 24: 981-990. https://doi.org/10.1016/j.cellsig.2012.01.008
  49. Zhang J, Wang X, Vikash V, Ye Q, Wu D, Liu Y, et al. 2016. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell Longev. 2016: 4350965.
  50. Lin MH, Cheng CH, Chen KC, Lee WT, Wang YF, Xiao CQ, et al. 2014. Induction of ROS-independent JNK-activation-mediated apoptosis by a novel coumarin-derivative, DMAC, in human colon cancer cells. Chem. Biol. Interact. 218: 42-49. https://doi.org/10.1016/j.cbi.2014.04.015
  51. Ko CH, Shen SC, Hsu CS, Chen YC. 2005. Mitochondrial-dependent, reactive oxygen species-independent apoptosis by myricetin: roles of protein kinase C, cytochrome c, and caspase cascade. Biochem. Pharmacol. 69: 913-927. https://doi.org/10.1016/j.bcp.2004.12.005
  52. Park SE, Song JD, Kim KM, Park YM, Kim ND, Yoo YH, et al. 2007. Diphenyleneiodonium induces ROS-independent p53 expression and apoptosis in human RPE cells. FEBS Lett. 581: 180-186. https://doi.org/10.1016/j.febslet.2006.12.006

Cited by

  1. Induction of apoptosis-like death by periplanetasin-2 in Escherichia coli and contribution of SOS genes vol.103, pp.3, 2017, https://doi.org/10.1007/s00253-018-9561-9
  2. Contribution of SOS genes to H2O2-induced apoptosis-like death in Escherichia coli vol.67, pp.6, 2021, https://doi.org/10.1007/s00294-021-01204-0