DOI QR코드

DOI QR Code

The Optimal Signal Intensity according to Image Scale Reset of MRI

자기공명영상의 image scale 재설정에 따른 최적의 영상신호 표준화

  • 이호범 (서울아산병원 영상의학과) ;
  • 최관우 (서울아산병원 영상의학과) ;
  • 손순룡 (원광보건대학교 방사선과)
  • Received : 2017.08.28
  • Accepted : 2017.09.18
  • Published : 2017.12.28

Abstract

In this study, we tried to improve the reproducibility of signal intensity by applying DOTS method. The study was conducted on 30 patients who had undergone hepatic screening because of poor reproducibility and decreased signal intensity. The images were acquired before and after injection of contrast media and then post-processed by DOTS methods. Signal intensity was compared and evaluated. The results showed that the signal intensity of the images was 183.3% ($1038.0{\pm}70.7$ before application, $2940.7{\pm}179.6$ after application) and 1118.4% ($444.1{\pm}92.4$, $5410.5{\pm}168.4$ after application). This is a significant improvement in the fact that the reproducibility of MRI) was changed by the DOTS method, which is a post-processing method.

본 연구는 자기공명검사 시 재현성이 달라져 신호강도가 저하되는 문제점을 후처리 기법인 DOTS 기법을 적용함으로써 개선하고자 하였다. 연구방법은 재현성이 떨어져 신호강도 저하가 가장 빈번하게 발생하는 간 검사를 시행한 30명을 대상으로 하였으며, 조영제 주입 전 후 영상을 획득한 다음 DOTS 기법으로 영상을 후처리하여 적용 여부에 따른 영상의 신호강도를 비교 평가하였다. 연구결과 영상의 신호강도는 DOTS 기법을 적용한 경우가 적용하지 않은 경우보다 조영제 주입 전에는 183.3%(적용 전 $1038.0{\pm}70.7$, 적용 후 $2940.7{\pm}179.6$), 주입 후에는 1118.4%($444.1{\pm}92.4$, 적용 후 $5410.5{\pm}168.4$) 유의하게 증가하였다. 이는 후처리 기법인 DOTS 기법을 통해 영상척도의 기준을 재설정하여 개선한 것으로써 자기공명검사 시 재현성이 달라져 신호강도가 저하되는 문제를 근본적으로 해결하였다는 데 의의가 있다.

Keywords

References

  1. V. P. Grover, J. M. Tognarelli, M. M. Crossey, I. J. Cox, S. D. Taylot-Robinson, and M. J. McPhail, "Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians," J Clin Exp Hepatol, Vol.5, No.3, pp.246-255, 2015. https://doi.org/10.1016/j.jceh.2015.08.001
  2. B. F. Kurland, E. R. Gerstner, J. M. Mountz, L. H. Schwartz, C. W. Ryan, M. M. Graham, J. M. Buatti, F. M. Fennessy, E. A. Eikman, V. Kumar, K. M. Forsterh, R. L. WahliFrank, and S. Liebermanc, "Promise and pitfalls of quantitative imaging in oncology clinical trials," Magn Reson Imaging, Vol.30, No.9, pp.1301-1312, 2012. https://doi.org/10.1016/j.mri.2012.06.009
  3. A. R. Padhani, G. Liu, D. M. Koh, T. L. Chenevert, H. C. Thoeny, T. Takahara, A. Dzik Jurasz, B. D. Ross, M. V. Cauteren, D. Collins, D. A. Hammoud, G. J. S. Rustin, B. Taouli, and P. L. Choyke, "Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations," Neoplasia, Vol.11, No.2, pp.102-125, 2009. https://doi.org/10.1593/neo.81328
  4. M. Wels, Y. Zheng, M. Huber, J. Hornegger, and D. Comaniciu, "A discriminative model-constrained EM approach to 3D MRI brain tissue classification and intensity non-uniformity correction," Physics in medicine and biology, Vol.56, No.11, p.3269, 2011. https://doi.org/10.1088/0031-9155/56/11/007
  5. J. M. Wang, Q. H. Kim, and R. T. Constable, "T1 measurements incorporating flip angle calibration and correction in vivo," J Magn Reson, Vol.182, No.2, pp.283-292, 2006. https://doi.org/10.1016/j.jmr.2006.07.005
  6. P. Mildenberger, M. Eichelberg, and E. Martin, "Introduction to the DICOM standard," Eur Radiol, Vol.12, No.4, pp.920-927, 2002. https://doi.org/10.1007/s003300101100
  7. B. Belaroussi, J. Milles, S. Carme, Y. M. Zhu, and H. Benoit-Cattin, "Intensity non-uniformity correction in MRI: existing methods and their validation," Med Image Anal, Vol.10, No.2, pp.234-246, 2006. https://doi.org/10.1016/j.media.2005.09.004
  8. R. G. Boyes, J. L. Gunter, C. Frost, A. L. Janke, T. Yeatman, D. L. Hill, M. A. Bernstein, P. M. Thompson, M. W. Weiner, N. Schuff, G. E. Alexanderi, R. J. Killianyj, C. D. Carlik, C. R.J ackb, and N. C. Foxa, "Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils," Neuroimage, Vol.39, No.4, pp.1752-1762, 2008. https://doi.org/10.1016/j.neuroimage.2007.10.026
  9. M. Gutberlet, R. Noeske, K. Schwinge, P. Freyhardt, R. Felix, and T. Niendorf, "Comprehensive cardiac magnetic resonance imaging at 3.0 tesla: feasibility and implications for clinical applications," Invest Radiol, Vol.41, No.2, pp.154-167, 2006. https://doi.org/10.1097/01.rli.0000195840.50230.10
  10. T. L. Chenevert, D. I. Malyarenko, D. Newitt, X. Li, M. Jayatilake, A. Tudorica, and M. J. Oborski, "Errors in quantitative image analysis due to platform-dependent image scaling," Translational oncology, Vol.7, No.1, pp.65-71, 2014. https://doi.org/10.1593/tlo.13811
  11. P. A. Rinck and R. N. Muller, "Field strength and dose dependence of contrast enhancement by gadolinium-based MR contrast agents," Eur Radiol, Vol.9, No.5, pp.998-1004, 1999. https://doi.org/10.1007/s003300050781
  12. O. Dietrich, J. G. Raya, S. B. Reeder, M. Ingrisch, M. F. Reiser, and S. O. Schoenberg, "Influence of multichannel combination, parallel imaging and other reconstruction techniques on MRI noise characteristics," Magnetic resonance imaging, Vol.26, No.6, pp.754-762, 2008. https://doi.org/10.1016/j.mri.2008.02.001
  13. D. A. Clunie, "DICOM structured reporting and cancer clinical trials results," Cancer Inform, Vol.4, pp.33-56, 2007.
  14. B. D. Klumpp, J. Sandstede, K. P. Lodemann, A. Seeger, T. Hoevelborn, M. Fenchel, U. Kramer, C. D. Claussen, and S. Miller, "Intraindividual comparison of myocardial delayed enhancement MR imagion using gadobenate dimeglumine at 1.5T and 3T," European Radiology, Vol.19, No.5, pp.1124-1131, 2009. https://doi.org/10.1007/s00330-008-1248-7
  15. C. H. Lim, S. J. Bae, "3T MR Spin Echo T1 Weighted Image at Optimization of Flip Angle," Radiologic Technology Proceedings of Korea, Vol.32, pp.177-182, 2009.