DOI QR코드

DOI QR Code

The rs196952262 Polymorphism of the AGPAT5 Gene is Associated with Meat Quality in Berkshire Pigs

  • Park, Woo Bum (Swine Science and Technology Center, Gyeongnam National University of Science & Technology) ;
  • An, Sang Mi (Swine Science and Technology Center, Gyeongnam National University of Science & Technology) ;
  • Yu, Go Eun (Swine Science and Technology Center, Gyeongnam National University of Science & Technology) ;
  • Kwon, Seulgi (Swine Science and Technology Center, Gyeongnam National University of Science & Technology) ;
  • Hwang, Jung Hye (Swine Science and Technology Center, Gyeongnam National University of Science & Technology) ;
  • Park, Da Hye (Swine Science and Technology Center, Gyeongnam National University of Science & Technology) ;
  • Kang, Deok Gyeong (Swine Science and Technology Center, Gyeongnam National University of Science & Technology) ;
  • Kim, Tae Wan (Swine Science and Technology Center, Gyeongnam National University of Science & Technology) ;
  • Park, Hwa Chun (Dasan Pig Breeding Co.) ;
  • Ha, Jeongim (Swine Science and Technology Center, Gyeongnam National University of Science & Technology) ;
  • Kim, Chul Wook (Swine Science and Technology Center, Gyeongnam National University of Science & Technology)
  • Received : 2017.08.17
  • Accepted : 2017.11.30
  • Published : 2017.12.31

Abstract

High-quality meat is of great economic importance to the pig industry. The 1-acylglycerol-3-phosphate-O-acyltransferase 5 (AGPAT5) enzyme converts lysophosphatidic acid to phosphatidic acid in the mitochondrial membrane. In this study, we found that the porcine AGPAT5 gene was highly expressed in muscle tissue, influencing meat characteristics, and we also identified a non-synonymous single-nucleotide polymorphism (nsSNP) (rs196952262, c.673 A>G) in the gene, associated with a change of isoleucine 225 to valine. The presence of this nsSNP was significantly associated with meat color (lightness), lower cooking loss, and lower carcass temperatures 1, 4, and 12 h after slaughter (items T1, T4, and T12 on the recognized quality scale, respectively), and tended to increase backfat thickness and the water-holding capacity. These results suggest that nsSNP (c.673A>G) of the AGPAT5 gene is a potential genetic marker of high meat quality in pigs.

Keywords

References

  1. Agarwal, A. K., Barnes, R. I., and Garg, A. (2006) Functional characterization of human 1-acylglycerol-3-phosphate acyltransferase isoform 8: Cloning, tissue distribution, gene structure, and enzymatic activity. Archiv. Biochem. Biophys. 449, 64-76. https://doi.org/10.1016/j.abb.2006.03.014
  2. Baby, S., Hyeong, K. E., Lee, Y. M., Jung, J. H., Oh, D. Y., Nam, K. C., Kim, T. H., Lee, H. K., and Kim, J. J. (2014) Evaluation of genome based estimated breeding values for meat quality in a berkshire population using high density single nucleotide polymorphism chips. Asian-Australas. J. Anim. Sci. 27, 1540-1547. https://doi.org/10.5713/ajas.2014.14371
  3. Biao, L., Jiang, Y. J., Yaling, Z., and Hatch, G. M. (2005) Cloning and characterization of murine 1-acyl-sn-glycerol 3-phosphate acyltransferases and their regulation by PPAR${\alpha}$ in murine heart. Biochem. J. 385, 469-477. https://doi.org/10.1042/BJ20041348
  4. Casiro, S., Velez-Irizarry, D., Ernst, C. W., Raney, N. E., Bates, R. O., Charles, M. G., and Steibel, J. P. (2017) Genome-wide association study in an F2 Duroc $\times$ Pietrain resource population for economically important meat quality and carcass traits. J. Anim. Sci. 95, 545-558.
  5. Coleman, R. A. and Lee, D. P. (2004) Enzymes of triacylglycerol synthesis and their regulation. Prog. Lipid Res. 43, 134-176. https://doi.org/10.1016/S0163-7827(03)00051-1
  6. Falconer, D. S. (1996) Introduction to Quantitative Genetics, 4th Edition, Trudy F. C. Mackay.
  7. Fan, B., Lkhagvadorj, S., Cai, W., Young, J., Smith, R. M., Dekkers, J. C., Huff-Lonergan, E., Lonergan, S. M., and Rothschild, M. F. (2010) Identification of genetic markers associated with residual feed intake and meat quality traits in the pig. Meat Sci. 84, 645-650. https://doi.org/10.1016/j.meatsci.2009.10.025
  8. Gonzalez-Prendes, R., Quintanilla, R., Canovas, A., Manunza, A., Figueiredo Cardoso, T., Jordana, J., Noguera, J. L., Pena, R. N., and Amills, M. (2017) Joint QTL mapping and geneexpression analysis identify positional candidate genes influencing pork quality traits. Scientific Rep. 7, 39830. https://doi.org/10.1038/srep39830
  9. Hwang, J. H., An, S. M., Kwon, S. G., Park, D. H., Kim, T. W., Kang, D. G., Yu, G. E., Kim, I. S., Park, H. C., Ha, J., and Kim, C. W. (2017) Associations of the polymorphisms in DHRS4, SERPING1, and APOR genes with postmortem pH in berkshire pigs. Animal Biotechnol. 1-6.
  10. Jung, W. Y., Kwon, S. G., Son, M., Cho, E. S., Lee, Y., Kim, J. H., Kim, B. W., Park, D. H., Hwang, J. H., Kim, T. W., Park, H. C., Park, B. Y., Choi, J. S., Cho, K. K., Chung, K. H., Song, Y. M., Kim, I. S., Jin, S. K., Kim, D. H., Lee, S. W., Lee, K. W., Bang, W. Y., and Kim, C. W. (2012) RNA-Seq approach for genetic improvement of meat quality in pig and evolutionary insight into the substrate specificity of animal carbonyl reductases. PloS One 7, e42198. https://doi.org/10.1371/journal.pone.0042198
  11. Knothe, G. and Dunn, R. O. (2009) A comprehensive evaluation of the melting points of fatty acids and esters determined by differential scanning calorimetry. J. Am. Oil Chem. Soc. 86, 843-856. https://doi.org/10.1007/s11746-009-1423-2
  12. Kouba, M., Enser, M., Whittington, F. M., Nute, G. R., and Wood, J. D. (2003) Effect of a high-linolenic acid diet on lipogenic enzyme activities, fatty acid composition, and meat quality in the growing pig. J. Anim. Sci. 81, 1967-1979. https://doi.org/10.2527/2003.8181967x
  13. Magowan, E., Moss, B., Fearom, A., and Ball, E. (2011) Effect of breed, finish weight and sex on pork meat and eating quality and fatty acid profile. Agri-Food Biosci. Inst. UK, 28.
  14. Monin, G., Talmant, A., Laborde, D., Zabari, M., and Sellier, P. (1986) Compositional and enzymatic characteristics of the Longissimus Dorsi muscle from large white, halothane-positive and halothane-negative pietrain, and hampshire pigs. Meat Sci. 16, 307-316. https://doi.org/10.1016/0309-1740(86)90041-0
  15. Park, K. M., Pramod, A. B., Kim, J. H., Choe, H. S., and Hwang, I. H. (2010) Molecular and biological factors affecting skeletal muscle cells after slaughtering and their impact on meat quality: A mini review. J. Muscle Foods 21, 280-307. https://doi.org/10.1111/j.1745-4573.2009.00182.x
  16. Prasad, S. S., Garg, A., and Agarwal, A. K. (2011) Enzymatic activities of the human AGPAT isoform 3 and isoform 5: localization of AGPAT5 to mitochondria. J. Lipid Res. 52, 451-462. https://doi.org/10.1194/jlr.M007575
  17. Razmaite, V., Kerziene, S., and Svirmickas, G. (2009) Correlations between fatty acid composition in subcutaneous tissue and meat quality traits in hybrids from different genotype and gender. Veterinarija ir Zootechnika 67-72.
  18. Shindou, H. and Shimizu, T. (2009) Acyl-CoA:lysophospholipid acyltransferases. J. Biol. Chem. 284, 1-5. https://doi.org/10.1074/jbc.R800046200
  19. Smet, S. D., Raes, K., and Demeyer, D. (2004) Meat fatty acid composition as affected by fatness and genetic factors: A review. Anim. Res. 53, 81-98. https://doi.org/10.1051/animres:2004003
  20. Vance, D. E. and Vance, J. E. (2008) CHAPTER 8 - Phospholipid biosynthesis in eukaryotes, Biochemistry of Lipids, Lipoproteins and Membranes (Fifth Edition), Elsevier, San Diego, pp. 213-244.
  21. Wood, J. D. and Enser, M. (1997) Factors influencing fatty acids in meat and the role of antioxidants in improving meat quality. Br. J. Nutr. 78, S49-S60. https://doi.org/10.1079/BJN19970134
  22. Yamashita, A., Hayashi, Y., Matsumoto, N., Nemoto-Sasaki, Y., Oka, S., Tanikawa, T., and Sugiura, T. (2014a) Glycerophosphate/Acylglycerophosphate acyltransferases. Biology 3, 801-830. https://doi.org/10.3390/biology3040801
  23. Yamashita, A., Hayashi, Y., Nemoto-Sasaki, Y., Ito, M., Oka, S., Tanikawa, T., Waku, K., and Sugiura, T. (2014b) Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. Prog. Lipid Res. 53, 18-81. https://doi.org/10.1016/j.plipres.2013.10.001
  24. Yu, K., Shu, G., Yuan, F., Zhu, X., Gao, P., Wang, S., Wang, L., Xi, Q., Zhang, S., Zhang, Y., Li, Y., Wu, T., Yuan, L., and Jiang, Q. (2013) Fatty acid and transcriptome profiling of longissimus dorsi muscles between pig breeds differing in meat quality. Int. J. Biol. Sci. 9, 108-118. https://doi.org/10.7150/ijbs.5306

Cited by

  1. Complement component 9 (C9) 유전자의 단일염기다형성과 버크셔 돼지 육질 형질과의 연관성 분석 vol.50, pp.5, 2017, https://doi.org/10.9721/kjfst.2018.50.5.480
  2. Genome Wide Analysis for Growth at Two Growth Stages in A New Fast-Growing Common Carp Strain ( Cyprinus carpio L.) vol.10, pp.None, 2017, https://doi.org/10.1038/s41598-020-64037-w