DOI QR코드

DOI QR Code

Whey Protein Attenuates Angiotensin II-Primed Premature Senescence of Vascular Smooth Muscle Cells through Upregulation of SIRT1

  • Hwang, Jung Seok (Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University) ;
  • Han, Sung Gu (Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University) ;
  • Lee, Chi-Ho (Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University) ;
  • Seo, Han Geuk (Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University)
  • Received : 2017.11.02
  • Accepted : 2017.11.28
  • Published : 2017.12.31

Abstract

Whey protein, a by-product of milk curdling, exhibits diverse biological activities and is used as a dietary supplement. However, its effects on stress-induced vascular aging have not yet been elucidated. In this study, we found that whey protein significantly inhibited the Ang II-primed premature senescence of vascular smooth muscle cells (VSMCs). In addition, we observed a marked dose- and time-dependent increase in SIRT1 promoter activity and mRNA in VSMCs exposed to whey protein, accompanied by elevated SIRT1 protein expression. Ang II-mediated repression of SIRT1 level was dose-dependently reversed in VSMCs treated with whey protein, suggesting that SIRT1 is involved in preventing senescence in response to this treatment. Furthermore, resveratrol, a well-defined activator of SIRT1, potentiated the effects of whey protein on Ang II-primed premature senescence, whereas sirtinol, an inhibitor of SIRT1, exerted the opposite. Taken together, these results indicated that whey protein-mediated upregulation of SIRT1 exerts an anti-senescence effect, and can thus ameliorate Ang II-induced vascular aging as a dietary supplement.

Keywords

References

  1. Brunet, A., Sweeney, L. B., Sturgill, J. F., Chua, K. F., Greer, P. L., Lin, Y., Tran, H., Ross, S. E., Mostoslavsky, R., Cohen, H. Y., Hu, L. S., Cheng, H. L., Jedrychowski, M. P., Gygi, S. P., Sinclair, D. A., Alt, F. W., and Greenberg, M. E. (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011-2015. https://doi.org/10.1126/science.1094637
  2. Chen, H. Z., Wang, F., Gao, P., Pei, J. F., Liu, Y., Xu, T. T., Tang, X., Fu, W. Y., Lu, J., Yan, Y. F., Wang, X. M., Han, L., Zhang, Z. Q., Zhang, R., Zou, M. H., and Liu, D. P. (2016) Age-associated sirtuin 1 reduction in vascular smooth muscle links vascular senescence and inflammation to abdominal aortic aneurysm. Circ. Res. 119, 1076-1088. https://doi.org/10.1161/CIRCRESAHA.116.308895
  3. Chen, W. Y., Wang, D. H., Yen, R. C., Luo, J., Gu, W., and Baylin, S. B. (2005) Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 123, 437-448. https://doi.org/10.1016/j.cell.2005.08.011
  4. Cohen, H. Y., Miller, C., Bitterman, K. J., Wall, N. R., Hekking, B., Kessler, B., Howitz, K. T., Gorospe, M., de Cabo, R., and Sinclair, D. A. (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390-392. https://doi.org/10.1126/science.1099196
  5. Da Silva, M. S., Bigo, C., Barbier, O., and Rudkowska, I. (2017) Whey protein hydrolysate and branched-chain amino acids downregulate inflammation-related genes in vascular endothelial cells. Nutr. Res. 38, 43-51. https://doi.org/10.1016/j.nutres.2017.01.005
  6. Feige, J. N. and Auwerx, J. (2008) Transcriptional targets of sirtuins in the coordination of mammalian physiology. Curr. Opin. Cell Biol. 20, 303-309. https://doi.org/10.1016/j.ceb.2008.03.012
  7. Fekete, A. A., Giromini, C., Chatzidiakou, Y., Givens, D. I., and Lovegrove, J. A. (2016) Whey protein lowers blood pressure and improves endothelial function and lipid biomarkers in adults with prehypertension and mild hypertension: Results from the chronic Whey2Go randomized controlled trial. Am. J. Clin. Nutr. 104, 1534-1544. https://doi.org/10.3945/ajcn.116.137919
  8. Gao, P., Xu, T. T., Lu, J., Li, L., Xu, J., Hao, D. L., Chen, H. Z., and Liu, D. P. (2014) Overexpression of SIRT1 in vascular smooth muscle cells attenuates angiotensin II-induced vascular remodeling and hypertension in mice. J. Mol. Med. 92, 347-357. https://doi.org/10.1007/s00109-013-1111-4
  9. Gorenne, I., Kumar, S., Gray, K., Figg, N., Yu, H., Mercer, J., and Bennett, M. (2013) Vascular smooth muscle cell sirtuin 1 protects against DNA damage and inhibits atherosclerosis. Circulation 127, 386-396. https://doi.org/10.1161/CIRCULATIONAHA.112.124404
  10. Haigis, M. C. and Sinclair, D. A. (2010) Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 5, 253-295. https://doi.org/10.1146/annurev.pathol.4.110807.092250
  11. Herbert, K. E., Mistry, Y., Hastings, R., Poolman, T., Niklason, L., and Williams, B. (2008) Angiotensin II-mediated oxidative DNA damage accelerates cellular senescence in cultured human vascular smooth muscle cells via telomere-dependent and independent pathways. Circ. Res. 102, 201-208. https://doi.org/10.1161/CIRCRESAHA.107.158626
  12. Hwang, J. S., Ham, S. A., Yoo, T., Lee, W. J., Paek, K. S., Lee, C. H., and Seo, H. G. (2016) Sirtuin 1 mediates the actions of peroxisome proliferator-activated receptor $\delta$ on the oxidized low-density lipoprotein-triggered migration and proliferation of vascular smooth muscle cells. Mol. Pharmacol. 90, 522-529. https://doi.org/10.1124/mol.116.104679
  13. Iwahara, N., Hisahara, S., Hayashi, T., and Horio, Y. (2009) Transcriptional activation of $NAD^+$-dependent protein deacetylase SIRT1 by nuclear receptor TLX. Biochem. Biophys. Res. Commun. 386, 671-675. https://doi.org/10.1016/j.bbrc.2009.06.103
  14. Kerasioti, E., Stagos, D., Georgatzi, V., Bregou, E., Priftis, A., Kafantaris, I., and Kouretas, D. (2016) Antioxidant effects of sheep whey protein on endothelial cells. Oxid. Med. Cell Longev. 2016, 6585737.
  15. Kim, M. Y., Kang, E. S., Ham, S. A., Hwang, J. S., Yoo, T. S., Lee, H., Paek, K. S., Park, C., Lee, T., Kim, J. H., Han, C. W., and Seo, H. G. (2012) The PPAR$\delta$-mediated inhibition of angiotensin II-induced premature senescence in human endothelial cells is SIRT1-dependent. Biochem. Pharmacol. 84, 1627-1634. https://doi.org/10.1016/j.bcp.2012.09.008
  16. Krissansen, G. W. (2007) Emerging health properties of whey proteins and their clinical implications. J. Am. Coll. Nutr. 26, 713S-723S. https://doi.org/10.1080/07315724.2007.10719652
  17. Li, L., Zhang, H. N., Chen, H. Z., Gao, P., Zhu, L. H., Li, H. L., Lv, X., Zhang, Q. J., Zhang, R., Wang, Z., She, Z. G., Zhang, R., Wei, Y. S., Du, G. H., Liu, D. P., and Liang, C. C. (2011a) SIRT1 acts as a modulator of neointima formation following vascular injury in mice. Circ. Res. 108, 1180-1189. https://doi.org/10.1161/CIRCRESAHA.110.237875
  18. Li, L., Gao, P., Zhang, H., Chen, H., Zheng, W., Lv, X., Xu, T., Wei, Y., Liu, D., and Liang, C. (2011b) SIRT1 inhibits angiotensin II-induced vascular smooth muscle cell hypertrophy. Acta. Biochim. Biophys. Sin. 43, 103-109. https://doi.org/10.1093/abbs/gmq104
  19. Madureira, A. R., Tavares, T., Gomes, A. M., Pintado, M. E., and Malcata, F. X. (2010) Invited review: physiological properties of bioactive peptides obtained from whey proteins. J. Dairy Sci. 93, 437-455. https://doi.org/10.3168/jds.2009-2566
  20. Matthews, C., Gorenne, I., Scott, S., Figg, N., Kirkpatrick, P., Ritchie, A., Goddard, M., and Bennett, M. (2006) Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: Effects of telomerase and oxidative stress. Circ. Res. 99, 156-164. https://doi.org/10.1161/01.RES.0000233315.38086.bc
  21. Najjar, S. S., Scuteri, A., and Lakatta, E. G. (2005) Arterial aging: Is it an immutable cardiovascular risk factor? Hypertension 46, 454-462. https://doi.org/10.1161/01.HYP.0000177474.06749.98
  22. Noriega, L. G., Feige, J. N., Canto, C., Yamamoto, H., Yu, J., Herman, M. A., Mataki, C., Kahn, B. B., and Auwerx, J. (2011) CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability. EMBO Rep. 12, 1069-1076. https://doi.org/10.1038/embor.2011.151
  23. Ota, H., Eto, M., Kano, M. R., Ogawa, S., Iijima, K., Akishita, M., and Ouchi, Y. (2008) Cilostazol inhibits oxidative stress-induced premature senescence via upregulation of SIRT1 in human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 28, 1634-1639. https://doi.org/10.1161/ATVBAHA.108.164368
  24. Pal, S. and Ellis, V. (2010) The chronic effects of whey proteins on blood pressure, vascular function, and inflammatory markers in overweight individuals. Obesity 18, 1354-1359. https://doi.org/10.1038/oby.2009.397
  25. Pazolli, E. and Stewart, S. A. (2008) Senescence: the good the bad and the dysfunctional. Curr. Opin. Genet. Dev. 18, 42-47. https://doi.org/10.1016/j.gde.2007.12.002
  26. Potente, M., Ghaeni, L., Baldessari, D., Mostoslavsky, R., Rossig, L., Dequiedt, F., Haendeler, J., Mione, M., Dejana, E., Alt, F. W., Zeiher, A. M., and Dimmeler, S. (2007) SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev. 21, 2644-2658. https://doi.org/10.1101/gad.435107
  27. Toussaint, O., Medrano, E. E., and von Zglinicki, T. (2000) Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp. Gerontol. 35, 927-945. https://doi.org/10.1016/S0531-5565(00)00180-7
  28. Touyz, R. M. and Schiffrin, E. L. (2000) Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol. Rev. 52, 639-672.
  29. Wang, C., Chen, L., Hou, X., Li, Z., Kabra, N., Ma, Y., Nemoto, S., Finkel, T., Gu, W., Cress, W. D., Chen, J. (2006) Interactions between E2F1 and SIRT1 regulate apoptotic response to DNA damage. Nat. Cell Biol. 8, 1025-1031. https://doi.org/10.1038/ncb1468
  30. Wang, R. H., Zheng, Y., Kim, H. S., Xu, X., Cao, L., Luhasen, T., Lee, M. H., Xiao, C., Vassilopoulos, A., Chen, W., Gardner, K., Man, Y. G., Hung, M. C., Finkel, T., and Deng, C. X. (2008) Interplay among BRCA1, SIRT1, and Survivin during BRCA 1-associated tumorigenesis. Mol. Cell 32, 11-20. https://doi.org/10.1016/j.molcel.2008.09.011
  31. Yang, X., Wei, J., He, Y., Jing, T., Li, Y., Xiao, Y., Wang, B., Wang, W., Zhang, J., and Lin, R. (2017) SIRT1 inhibition promotes atherosclerosis through impaired autophagy. Oncotarget 8, 51447-51461.
  32. Yeung, F., Hoberg, J. E., Ramsey, C. S., Keller, M. D., Jones, D. R., Frye, R. A., and Mayo, M. W. (2004) Modulation of NF-${\kappa}B$-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23, 2369-2380. https://doi.org/10.1038/sj.emboj.7600244
  33. Yi, J. and Luo, J. (2010) SIRT1 and p53, effect on cancer, senescence and beyond. Biochim. Biophys. Acta. 1804, 1684-1689. https://doi.org/10.1016/j.bbapap.2010.05.002
  34. Yu, W., Fu, Y. C., Chen, C. J., Wang, X., and Wang, W. (2009) SIRT1: a novel target to prevent atherosclerosis. J. Cell Biochem. 108, 10-13. https://doi.org/10.1002/jcb.22240
  35. Zhang, M. J., Zhou, Y., Chen, L., Wang, X., Long, C. Y., Pi, Y., Gao, C. Y., Li, J. C., and Zhang, L. L. (2016) SIRT1 improves VSMC functions in atherosclerosis. Prog. Biophys. Mol. Biol. 121, 11-15. https://doi.org/10.1016/j.pbiomolbio.2016.02.003
  36. Zhang, Q. J., Wang, Z., Chen, H. Z., Zhou, S., Zheng, W., Liu, G., Wei, Y. S., Cai, H., Liu, D. P., and Liang, C. C. (2008) Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc. Res. 80, 191-199. https://doi.org/10.1093/cvr/cvn224

Cited by

  1. Cheese Whey Processing: Integrated Biorefinery Concepts and Emerging Food Applications vol.8, pp.8, 2017, https://doi.org/10.3390/foods8080347
  2. Histone Deacetylase SIRT1, Smooth Muscle Cell Function, and Vascular Diseases vol.11, pp.None, 2017, https://doi.org/10.3389/fphar.2020.537519