DOI QR코드

DOI QR Code

Complexity Analysis of Internet Video Coding (IVC) Decoding

  • Park, Sang-hyo (Communications & Media R&D Division, Korea Electronics Technology Institute) ;
  • Dong, Tianyu (Department of Computer Science, Hanyang University) ;
  • Jang, Euee S. (Department of Computer Science, Hanyang University)
  • Received : 2017.11.24
  • Accepted : 2017.12.09
  • Published : 2017.12.31

Abstract

The Internet Video Coding (IVC) standard is due to be published by Moving Picture Experts Group (MPEG) for various Internet applications such as internet broadcast streaming. IVC aims at three things fundamentally: 1) forming IVC patents under a free of charge license, 2) reaching comparable compression performance to AVC/H.264 constrained Baseline Profile (cBP), and 3) maintaining computational complexity for feasible implementation of real-time encoding and decoding. MPEG experts have worked diligently on the intellectual property rights issues for IVC, and they reported that IVC already achieved the second goal (compression performance) and even showed comparable performance to even AVC/H.264 High Profile (HP). For the complexity issue, however, there has not been thorough analysis on IVC decoder. In this paper, we analyze the IVC decoder in view of the time complexity by evaluating running time. Through the experimental results, IVC is 3.6 times and 3.1 times more complex than AVC/H.264 cBP under constrained set (CS) 1 and CS2, respectively. Compared to AVC/H.264 HP, IVC is 2.8 times and 2.9 times slower in decoding time under CS1 and CS2, respectively. The most critical tool to be improved for lightweight IVC decoder is motion compensation process containing a resolution-adaptive interpolation filtering process.

Keywords

References

  1. J. Chen, F. Xu, Y. He, J. Villasenor, Y. Han, Y. Xu, Y. Rong, C. Reader and J. Wen, "Efficient Video Coding Using Legacy Algorithmic Approaches," IEEE Trans. Multimedia, vol. 14, no. 1, pp. 111-120, Feb. 2012. https://doi.org/10.1109/TMM.2011.2169046
  2. K. Choi and E. Jang, "Royalty-free video coding standards in MPEG," IEEE Signal Process. Mag., vol. 31, no. 1, pp.145-148,155, Jan. 2014. https://doi.org/10.1109/MSP.2013.2282413
  3. J. Bankoski, P. Wilkins and Y. Xu, "Technical overview of VP8, an open source video codec for the web," in Proc. IEEE ICME, 2011, pp. 1-6
  4. J. Bankoski, R. S. Bultje, A. Grange, Q. Gu, J. Han, J. Koleszar, D. Mukherjee, P. Wilkins and Y. Xu, "Towards a next generation open-source video codec," Proc. SPIE 8666, Feb. 2013.
  5. I. K. Kim, S. Lee, Y. Piao and J. Chen, "Coding efficiency comparison of new video coding standards: HEVC vs VP9 vs AVS2 video," in Proc. IEEE ICMEW, Jul. 2014.
  6. Call for Proposals (CfP) for Internet Video Coding Technologies, ISO/IEC JTC1/SC29/WG11, document N12204, Jul., 2011.
  7. Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC, ISO/IEC/ITU, 2nd rev., 2015 [Online]. Available: http://www.iso.org/iso/standards_development/patents
  8. R. Wang, T. Huang, S. Park, J. -G. Kim, E. S. Jang, C. Reader and W. Gao, "The MPEG Internet Video Coding Standard," IEEE Signal Process. Mag., vol. 33, no. 5, Sep. 2016.
  9. M. Horowitz, A. Joch and F. Kossentini, "H.264/AVC baseline profile decoder complexity analysis," IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 704-716, Jul. 2003. https://doi.org/10.1109/TCSVT.2003.814967
  10. F. Bossen, B. Bross, K. Suhring and D. Flynn, "HEVC complexity and implementation analysis," IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1685- 1696, Dec. 2012 https://doi.org/10.1109/TCSVT.2012.2221255
  11. J. Vanne, M. Viitanen, T. D. Hamalainen and A. Hallapuro, "Comparative rate-distortion-complexity analysis of HEVC and AVC video codecs," IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1885- 1898, Dec. 2012. https://doi.org/10.1109/TCSVT.2012.2223013
  12. T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Juthra, "Overview of the H.264/AVC video coding standard," IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 560-576, Jul. 2003. https://doi.org/10.1109/TCSVT.2003.815165
  13. Generic Coding of Moving Pictures and Associated Audio Information - Part 2: Video, ISO/IEC 13818-2 (MPEG-2)-ITU-T Recommendation H.262, 1994.
  14. Preliminary Text of ISO/IEC FDIS 14496-33 Internet Video Coding, ISO/IEC JTC1/SC29/WG11 N16679, Jan. 2017.
  15. L. Chen, S. Dong, R. Wang, Z. Wang, S. Ma, W. Wang and W. Gao, "Low-cost Multi-hypothesis Motion Compensation for Video Coding," Proc. SPIE 9029, 2014.
  16. C.-T. Chen, "Adaptive transform coding via quad tree-based variable block size DCT," in Proc. IEE E ICASSP'87, vol. 3, Glasgow, Scotland, U.K., May 1989.
  17. Q. Yu, W. Yu, P. Yang, J. Zheng, X. Zheng and Y. He, "An Efficient Adaptive Binary Arithmetic Coder Based on Logarithmic Domain," IEEE Trans. Image Process., vol. 24, no. 11, pp. 4225-4239, Nov. 2015. https://doi.org/10.1109/TIP.2015.2462089
  18. Honjo, M., "Method of correcting an image signal decoded in block units," U.S. Patent 5337088 A, Aug. 9, 1994.
  19. S. Park, R. Wang and J. -G. Kim, "Internet Video Coding Test Model (ITM) v 14.1," ISO/IEC JTC1/SC29/WG11, document N16035, 2016.
  20. [online] Intel VTune TM Amplifier XE 2011 Release Notes for Windows OS. Available: https://software.intel.com/sites/default/files/m/d/4/1/d/ 8/release_notes_amplifier_xe_windows.pdf
  21. R. Wang, J. -G. Kim and S. Park, "Description of IVC Exploration Experiments," ISO/IEC JTC1/SC29/WG11, document N15761, Oct., 2015.
  22. "Conditions for visual comparison of VCB, IVC and WVC codecs", ISO/IEC JTC1/SC29/WG11 MPEG, N13943, Nov. 2013
  23. S. Park, K. Choi and E. S. Jang, "Zero coefficientaware fast butterfly-based inverse discrete cosine transform algorithm," IET Image Processing, vol. 10, no. 2, pp. 89-100, Jul. 2016. https://doi.org/10.1049/iet-ipr.2015.0036
  24. S. Park, K. Choi, G. Noh and E. S. Jang, "Frame-based Adaptive Selection of ALF for Fast HEVC Decoding," Proc. IEEE BMSB, pp.1-4, 2012.