DOI QR코드

DOI QR Code

Sprague Dawley Rat의 미세병변에서 Moire Artifact를 제거하기 위한 Grid suppression software 사용 후 영상분석

Image Analysis Using Grid Suppression Software to Remove Moire Artifact from Micro Lesions of Sprague Dawley Rat

  • Lee, Sang-Ho (Department of Radiological Science, Seonam University)
  • 투고 : 2017.11.29
  • 심사 : 2017.12.19
  • 발행 : 2017.12.31

초록

Moire artifact는 미세병변과 주파수 대역이 중첩되기 때문에 moire artifact를 제거하는 Image processing software를 사용할 경우 미세 병변의 손실을 가져올 수 있다. 본 연구에서는 SD(Sprague Dawley) Rat에 microcalcification과 microfracture와 같은 미세병변을 임의로 형성하여 영상화하고, reference 영상과 grid suppression software를 사용한 영상, optimizied grid 영상을 비교 분석하였다. 영상은 두 명의 영상의학과 전문의가 컨소시엄을 형성하여 판독하였고, 판독 결과 값은 McNemar's test 이용하여 평가하였다. 73개의 microcalcifications 중 Grid suppression후 13 cases에서, optimized grid를 사용한 영상은 3 cases에서 영상의 손실이 확인되어 Grid suppression후의 영상이 통계적으로 유의하게 영상 손실을 발생하고 있음을 보여주고 있다(p=0.021). 총 53개의 fracture line은 Grid suppression을 시행한 후 영상에서 19 cases가 영상의 손실을 보였고, optimized grid를 사용한 영상에서는 영상손실이 없는 것으로 판독되었다. 따라서 미세병변을 진단하는 영상에 있어 moire artifact를 제거하기 위한 grid suppression software 사용은 신중하게 고려되어야 할 것이다.

Because moire artifacts overlap with fine lesions and frequency bands, image processing software that removes moire artifacts can lead to loss of micro lesions. In this study, microscopic lesions such as microcalcification and microfracture were randomly formed on SD (Sprague Dawley) rats and image and optimized grid images were compared and analyzed using reference image and grid suppression software. The images were read by two consecutive radiologists using a McNemar's test. Among the 73 microcalcifications, in the 13 cases after grid suppression, the image of the optimized grid shows the loss of image in 3 cases, and the image after grid suppression shows statistically significant image loss (p=0.021). In all 53 fracture lines, there were 19 cases of image loss after the grid suppression, and only one case of the optimized grid showed no image loss. Therefore, the use of grid suppression software to remove moire artifacts should be carefully considered in the diagnosis of micro lesions.

키워드

참고문헌

  1. M. A. Thomas, A. H. Rowberg, S. G. Langer, Y. Kim, Iterative image enhancement of CR and DR images. Journal Digital Imaging, Sep. 2004; 17(3):189-195. https://doi.org/10.1007/s10278-004-1000-z
  2. J. Wang and H. K. Huang, Film digitization aliasing artifacts caused by grid line patterns. IEEE Trans. Medical Imaging, June 1994; 13(2):375-385 https://doi.org/10.1109/42.293930
  3. D.S. Kim, S. Lee. Analysis on the Saturation of Grid Artifact and its Reduction in Digital Radiography Images Based on the Adaptive Filtering. Journal of the institute of electronics engineers of Korea, 2011;48(4),1-11
  4. D.S. Kim. Grid Angle Optimization and Grid Artifact Reduction in Digital Radiography Images Based on the Modulation Model. Journal of the institute of electronics engineers of Korea, 2011;48(3):30-41.
  5. HM Lee, J Yoon, HJ Kim. Effects of Contrast Improvement on High Voltage Rectification Type of X-ray Diagnostic Apparatus, Journal of Radiological Science and Technology, 2014;37(3):187-193
  6. D.S. Kim, S. Lee. Grid artifact reduction for direct digital radiography detectors based on rotated stationary grids with homomorphic filtering. Med. Phys, 2013; 40(6):061905. https://doi.org/10.1118/1.4807085
  7. Motoaki Kato, Sachie Nishimura, Takahide Okamoto, et al. Clinical efficacy of image processing of grid detection and suppression (GDS) in computed radiography". Nihon Hoshasen Gijutsu Gakkai Zasshi. 2005; 61(8):1158-1169. https://doi.org/10.6009/jjrt.KJ00003943078
  8. Kim, Dong-Sik. Artifact Reduction in Digital Radiography Images with the Stationary Grid Based on 1-Dimensional Filters. Journal of the Institute of Electronics Engineers of Korea SP, 2010; 47(5):117-126.
  9. Ryoji Sasada, Masahiko Yamada, Shoji Hara, Hideya Takeo, Kazuo Shimura. Stationary grid pattern removal using 2D technique for moire-free radiographic image display, Proceedings Volume 5029, Medical Imaging 2003: Visualization, Image-Guided Procedures, and Display.
  10. Chih-Yang Lin, Wen-Jeng Lee, Shyh-Jye Chen, et. al. A Study of Grid Artifacts Formation and Elimination in Computed Radiographic Images. Journal of Digital Imaging. 2006;19(4):351-361. https://doi.org/10.1007/s10278-006-0630-8
  11. E. H. Mo, S .H. Park, S.H. Lee, et al. Loss of Fine Lesions after Removing Moire Artifacts in the DR Image, Journal of Convergence Information Technology(JCIT), 2016; 11(5):64-73
  12. Carlos Ubeda, Eliseo Vano, Luciano Gonzalez, Patricia. Miranda. Influence of the antiscatter grid on dose and image quality in pediatric interventional cardiology X-ray systems. Catheterization and Cardiovascular Interventions, 2013; 82(1): 51-57. https://doi.org/10.1002/ccd.24602
  13. Fritz, Shannon, and A. Kyle Jones. Guidelines for anti-scatter grid use in pediatric digital radiography. Pediatric radiology, 2014; 44(3):313-321. https://doi.org/10.1007/s00247-013-2824-9
  14. Tapiovaara, Markku J., Michael Sandborg, and David R. Dance. A search for improved technique factors in pediatric fluoroscopy. Physics in medicine and biology, 1999; 44(2):537-559 https://doi.org/10.1088/0031-9155/44/2/018
  15. SH Jeung, BH Han, HR Jung. Evaluation of Image Quality When Using Grid During Child Chest X-Ray Examination. Journal of Radiological Science and Technology, 2017;40(3):371-376 https://doi.org/10.17946/JRST.2017.40.3.03