References
- S.P. Arya and R. Gupta, On strongly continuous mappings, Kyungpook Math. J. 14(1974), 131-143.
- F. Beckhoff, Topologies on the spaces of ideals of a Banach algebra, Stud. Math. 115(1995), 189-205. https://doi.org/10.4064/sm-115-2-189-205
- F. Beckhoff, Topologies of compact families on the ideal space of a Banach algebra, Stud. Math. 118(1996), 63-75. https://doi.org/10.4064/sm-118-1-63-75
- F. Beckhoff, Topologies on the ideal space of a Banach algebra and spectral synthesis, Proc. Amer. Math. Soc. 125(1997), 2859-2866. https://doi.org/10.1090/S0002-9939-97-03831-8
- A.S. Davis, Indexed system of neighbourhoods for general topological spaces, Amer. Math Monthly 68(1961), 886-893. https://doi.org/10.1080/00029890.1961.11989785
- D. Gauld, M. Mrsevic, I.L. Reilly and M.K. Vamanamurthy, Continuity properties of functions, Coll. Math. Soc. Janos Bolyai 41(1983), 311-322.
- A.M. Gleason, Universal locally connected refinements, Illinois J. Math. 7(1963), 521-531.
- E. Hewitt, On two problems of Urysohn, Ann. of Math. 47(3) (1946), 503-509. https://doi.org/10.2307/1969089
- J.K. Kohli, A class of mappings containing all continuous and all semiconnected mappings, Proc. Amer. Math. Soc. 72(1) (1978), 175-181. https://doi.org/10.1090/S0002-9939-1978-0493941-9
- J.K. Kohli, A unified view of (complete) regularity and certain variants of (complete) regularity, Can. J. Math. 36(5) (1984), 783-794. https://doi.org/10.4153/CJM-1984-045-8
- J.K. Kohli, A framework including the theories of continuous and certain non-continuous functions, Note Mat. 10(1) (1990), 37-45.
- J.K. Kohli, A unified approach to continuous and certain non-continuous functions, J. Austral. Math. Soc. Ser. A 48(3) (1990), 347-358. https://doi.org/10.1017/S1446788700029906
- J.K. Kohli, A unified approach to continuous and certain non-continuous functions II, Bull. Austral. Math. Soc. 41(1) (1990), 57-74. https://doi.org/10.1017/S0004972700017858
- J.K. Kohli, Change of topology, characterizations and product theorems for semilocally P-spaces, Houston J. Math. 17(3) (1991), 335-350.
- J.K. Kohli and A.K. Das, New normality axioms and factorizations of normality, Glasnik Mat. 37(57) (2002), 105-114.
-
J.K. Kohli and A.K. Das, On functionally
${\theta}$ -normal spaces, Applied General Topology 6(1) (2005), 1-14. https://doi.org/10.4995/agt.2005.1960 - J.K. Kohli and A.K. Das, A class of spaces containing all generalized absolutely closed (almost compact) spaces, Applied General Topology 7(2) (2006), 233-244. https://doi.org/10.4995/agt.2006.1926
-
J.K. Kohli, A.K. Das and R. Kumar, Weakly functionally
${\theta}$ -normal spaces,${\theta}$ -shrinking of covers and partition of unity, Note di Matematica 19(1999), 293-297. - J.K. Kohli and R. Kumar, z-supercontinuous functions, Indian J. Pure Appl. Math. 33(7) (2002), 1097-1108.
-
J.K. Kohli and D. Singh,
$D_{{\delta}}$ -supercontinuous functions, Indian J. Pure Appl. Math. 34(7) (2003), 1089-1100. -
J.K. Kohli and D. Singh, Separation Axioms between regular spaces and
$R_{O}$ -spaces, Scientific Studies and Research Series Mathematics and Informatics 25(2) (2015), 25-46. - J.K. Kohli, D. Singh and J. Aggarwal, F-supercontinuous functions, Applied General Topology 10(1) (2009), 69-83. https://doi.org/10.4995/agt.2009.1788
- J.K. Kohli, D. Singh and J. Aggarwal, R-supercontinuous functions, Demonstratio Mathematica 43(3) (2010), 703-723.
- J.K. Kohli, D. Singh and J. Aggarwal, R-supercontinuous functions, Demonstratio Mathematica 47(2) (2014), 433-448.
- J.K. Kohli, D. Singh and C.P. Arya, Perfectly continuous functions, Studii Si Cercetari Stiintifice Ser. Matem. Univ. Bacau Nr. 18(2008), 99-110.
-
J.K. Kohli, D. Singh and R. Kumar, Some properties of strongly
${\theta}$ -continuous functions, Bull. Cal. Math. Soc. 100(2008), 185-196. - J.K. Kohli, D. Singh and B.K. Tyagi, Quasi perfectly continuous functions and their function spaces, Scientific Studies and Research Series Mathematics and Informatics 21(2) (2011), 23-40.
-
P.E. Long and L. Herrington, Strongly
${\theta}$ -continuous functions , J. Korean Math. Soc. 18(1) (1981), 21-28. - N. Levine, Strong continuity in topological spaces, Amer. Math. Monthly 67(1960), 269. https://doi.org/10.2307/2309695
- J. Mack, Countable paracompactness and weak normality properties, Trans. Amer. Math. Soc. 148(1970), 265-272. https://doi.org/10.1090/S0002-9947-1970-0259856-3
- B.M. Munshi and D.S. Bassan, Super-continuous mappings, Indian J. Pure Appl. Math.13(1982), 229-236.
-
T. Noiri, On
${\delta}$ -continuous functions, J. Korean Math. Soc. 16(2)(1980), 161-166. - T. Noiri, Supercontinuity and some strong forms of continuity, Indian J. Pure. Appl. Math. 15(3) (1984), 241-250.
- I.L. Reilly and M.K. Vamanamurthy, On super-continuous mappings, Indian J. Pure. Appl. Math. 14(6) (1983), 767-772.
- N.A. Shanin, On separation in topological spaces, Dokl. Akad. Nauk. SSSR 38(1943), 110-113.
- M.K. Singal and S.B. Nimse, z-continuous mappings, Mathematics Student, 66(1-4) (1997), 193-210.
- D. Singh, D-supercontinuous functions, Bull. Cal. Math. Soc. 94(2) (2002), 67-76.
- D. Singh, cl-supercontinuous functions, Applied General Topology 8(2) (2007), 293-300. https://doi.org/10.4995/agt.2007.1899
- D. Singh, B.K. Tyagi, J. Aggarwal and J.K. Kohli, Rz-supercontinuous functions, Mathematica Bohemica 140(3) (2014), 329-343.
- D.W.B. Somerset, Ideal spaces of Banach algebras, Proc. London Math. Soc. 78(3) (1999), 369-400. https://doi.org/10.1112/S0024611599001677
- T. Soundararajan, Weakly Hausdorff spaces and cardinality of spaces, General Topology and its relations to Modern Analysis and Algebra, Proceedings Kanpur Topology Conference 1968, Academia, Prague, 1971, 301-306.
- L.A. Steen and J.A. Seeback, Jr., Counter Examples in Topology, Springer Verlag, New York, 1978.
- B.K. Tyagi, J.K. Kohli and D. Singh, Rcl-supercontinuous functions, Demonstratio Math. 46(1) (2013), 229-244.
- R. Vaidyanathswamy, Treatise on Set Topology, Chelsea Publishing company, New York, 1960.
- N.V. Velicko, H-Closed topological spaces, Amer. Math. Soc. Transl. 78(1968), 103-118.
- C.T. Yang, On paracompact spaces, Proc. Amer. Math. Soc. 5(2) (1954), 185-194. https://doi.org/10.1090/S0002-9939-1954-0062418-0
- G.S. Young, Introduction of local connectivity by change of topology, Amer. J. Math. 68(1946), 479-494. https://doi.org/10.2307/2371828