• Title/Summary/Keyword: completely P-regular space

Search Result 2, Processing Time 0.016 seconds

A CLASS OF MAPPINGS BETWEEN Rz-SUPERCONTINUOUS FUNCTIONS AND Rδ-SUPERCONTINUOUS FUNCTIONS

  • Prasannan, A.R.;Aggarwal, Jeetendra;Das, A.K.;Biswas, Jayanta
    • Honam Mathematical Journal
    • /
    • v.39 no.4
    • /
    • pp.575-590
    • /
    • 2017
  • A new class of functions called $R_{\theta}$-supercontinuous functions is introduced. Their basic properties are studied and their place in the hierarchy of strong variants of continuity, which already exist in the literature, is elaborated. The class of $R_{\theta}$-supercontinuous functions properly contains the class of $R_z$-supercontinuous functions [39] which in turn properly contains the class of $R_{cl}$-supercontinuous functions [43] and so includes all cl-supercontinuous (clopen continuous) functions ([38], [34]) and is properly contained in the class of $R_{\delta}$-supercontinuous functions [24].

MYLLER CONFIGURATIONS IN FINSLER SPACES. APPLICATIONS TO THE STUDY OF SUBSPACES AND OF TORSE FORMING VECTOR FIELDS

  • Constantinescu, Oana
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1443-1482
    • /
    • 2008
  • In this paper we define a Myller configuration in a Finsler space and use some special configurations to obtain results about Finsler subspaces. Let $F^{n}$ = (M,F) be a Finsler space, with M a real, differentiable manifold of dimension n. Using the pull back bundle $({\pi}^{*}TM,\tilde{\pi},\widetilde{TM})$ of the tangent bundle $(TM,{\pi},M)$ by the mapping $\tilde{\pi}={\pi}/TM$ and the Cartan Finsler connection of a Finsler space, we obtain an orthonormal frame of sections of ${\pi}^{*}TM$ along a regular curve in $\widetilde{TM}$ and a system of invariants, geometrically associated to the Myller configuration. The fundamental equations are written in a very simple form and we prove a fundamental theorem. Important lines in a Finsler subspace are defined like special lines in a Myller configuration, geometrically associated to the subspace: auto parallels, lines of curvature, asymptotes. Torse forming vector fields with respect to the Cartan Finsler connection are characterized by means of the invariants of the Frenet frame of a versor field along a curve, and the new notion of torse forming vector fields in the sense of Myller is introduced. The particular cases of concurrence and parallelism in the sense of Myller are completely studied, for vector fields from the distribution $T^m$ of the Myller configuration and also from the normal distribution $T^p$.