DOI QR코드

DOI QR Code

THE BRIOT-BOUQUET DIFFERENTIAL SUBORDINATION ASSOCIATED WITH VERTICAL STRIP DOMAINS

  • Received : 2017.02.13
  • Accepted : 2017.10.25
  • Published : 2017.12.25

Abstract

For real parameters ${\alpha}$ and ${\beta}$ such that ${\alpha}$ < 1 < ${\beta}$, we denote by $\mathcal{P}({\alpha},{\beta})$ the class of analytic functions p, which satisfy p(0) = 1 and ${\alpha}$ < ${\Re}\{p(z)\}$ < ${\beta}$ in ${\mathbb{D}}$, where ${\mathbb{D}}$ denotes the open unit disk. Let ${\mathcal{A}}$ be the class of analytic functions in ${\mathbb{D}}$ such that f(0) = 0 = f'(0) - 1. For $f{\in}{\mathcal{A}}$, ${\mu}{\in}{\mathbb{C}}{\backslash}\{0\}$ and ${\nu}{\in}{\mathbb{C}}$, let $I_{{\mu},{\nu}:{\mathcal{A}}{\rightarrow}{\mathcal{A}}$ be an integral operator defined by $$I_{{\mu},{\nu}[f](z)}=\({\frac{{\mu}+{\nu}}{z^{\nu}}}{\int}^z_0f^{\mu}(t)t^{{\nu}-1}dt\)^{1/{\mu}}$$. In this paper, we find some sufficient conditions on functions to be in the class $\mathcal{P}({\alpha},{\beta})$. One of these results is applied to the integral operator $I_{{\mu},{\nu}}$ of two classes of starlike functions which are related to the class $\mathcal{P}({\alpha},{\beta})$.

Keywords

References

  1. A. A. Attiya and T. Bulboaca, A general theorem associated with the Briot-Bouquet differential subordination, J. Comput. Anal. Appl. 16(1) (2014), 722-730.
  2. S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446. https://doi.org/10.1090/S0002-9947-1969-0232920-2
  3. P. Eenigenburg, P. T. Mocanu, S. S. Miller and M. O. Reade, On a Briot-Bouquet differential subordination, General Inequalities 3, International Series of Numerical Mathematics 64 (1983), 339-348.
  4. I. H. Kim and N. E. Cho, Sucient conditions for Caratheodory functions, Computers and Mathematics with Applications 59 (2010), 2067-2073. https://doi.org/10.1016/j.camwa.2009.12.012
  5. K. Kuroki and S. Owa, Notes on new class for certain analytic functions, Adv. Math. Sci. J. 1(2) (2012), 127-131.
  6. A. Marx, Untersuchungen uber schlichte Abildung, Math. Ann. 107 (1932/33), 40-67. https://doi.org/10.1007/BF01448878
  7. S. S. Miller and P. T. Mocanu, Differential Subordination, Theory and Application, Marcel Dekker, Inc., New York, Bassel, 2000.
  8. S. S. Miller and P. T. Mocanu, Univalent solutions of Briot-Bouquet differential equations, J. Differential Equations 56 (1985), 297-309. https://doi.org/10.1016/0022-0396(85)90082-8
  9. Ch. Pommerenke, Univalent functions, Vandenhoeck und Ruprecht, 1975.
  10. Y. J. Sim and O. S. Kwon, Some results on analytic functions associated with vertical strip domain, Proc. Jangjeon Math. Soc. 19(4) (2016), 653-661.
  11. E. Strohhacker, Beitrage zur Theorie der schlichten Funktionen, Math. Z. 37 (1933), 356-380. https://doi.org/10.1007/BF01474580