Abstract
For real parameters ${\alpha}$ and ${\beta}$ such that ${\alpha}$ < 1 < ${\beta}$, we denote by $\mathcal{P}({\alpha},{\beta})$ the class of analytic functions p, which satisfy p(0) = 1 and ${\alpha}$ < ${\Re}\{p(z)\}$ < ${\beta}$ in ${\mathbb{D}}$, where ${\mathbb{D}}$ denotes the open unit disk. Let ${\mathcal{A}}$ be the class of analytic functions in ${\mathbb{D}}$ such that f(0) = 0 = f'(0) - 1. For $f{\in}{\mathcal{A}}$, ${\mu}{\in}{\mathbb{C}}{\backslash}\{0\}$ and ${\nu}{\in}{\mathbb{C}}$, let $I_{{\mu},{\nu}:{\mathcal{A}}{\rightarrow}{\mathcal{A}}$ be an integral operator defined by $$I_{{\mu},{\nu}[f](z)}=\({\frac{{\mu}+{\nu}}{z^{\nu}}}{\int}^z_0f^{\mu}(t)t^{{\nu}-1}dt\)^{1/{\mu}}$$. In this paper, we find some sufficient conditions on functions to be in the class $\mathcal{P}({\alpha},{\beta})$. One of these results is applied to the integral operator $I_{{\mu},{\nu}}$ of two classes of starlike functions which are related to the class $\mathcal{P}({\alpha},{\beta})$.