DOI QR코드

DOI QR Code

Optimal Condition of Natural Silk 3D Matrix Production by Silkworm Spinning

  • Bae, Sung Min (Sericultural and Apicultural Materials Division, National Institute of Agricultural Science, RDA) ;
  • Kweon, HaeYong (Sericultural and Apicultural Materials Division, National Institute of Agricultural Science, RDA) ;
  • Jo, You-Young (Sericultural and Apicultural Materials Division, National Institute of Agricultural Science, RDA)
  • Received : 2017.08.24
  • Accepted : 2017.10.24
  • Published : 2017.12.31

Abstract

Silk is appealing materials for many biomedical applications involving tissue engineering and implantable devices, because of its biocompatibility, environmental stability, controlled proteolytic biodegradability and morphologic flexibility. Silk matrix is required for the treatment of a wide wound area, but the present silk matrix is made by the second processing, and thus, the labor and the cost are high. In this work, we investigated the optimal production condition of natural silk 3D matrix using the silkworms and invented Automatic Silk Matrix Making Machine (ASMMM) for natural silk 3D matrix production. As a result, we determined that optimal production condition for making A4 paper size natural silk 3D matrix was used Rough aquarelle paper on surface at $25^{\circ}C$ and 30 silkworm larvae. These results are expected to provide basic data for the efficient production of the natural silk 3D matrix, and it is suggested that the produced natural silk 3D matrix is useful as a medical biomaterials.

Keywords

References

  1. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, et al. (2003) Silk-based biomateials. Biomaterials 24(3), 401-416. https://doi.org/10.1016/S0142-9612(02)00353-8
  2. Ari T, Freddi G, Innocenti R, Tsukada M. (2004) Biodegradation of Bombyx mori silk fibroin fibers and films. J. Appl. Polym. Sci. 91(4), 2383-2390. https://doi.org/10.1002/app.13393
  3. Bae SM, Jo YY, Lee KG, Kim HB, Kweon H. (2016) Antioxidant activity of silkworm powder treated with protease. Int. J. Indust. Entomol. 33(2), 78-84. https://doi.org/10.7852/ijie.2016.33.2.78
  4. Cho HY, Baik YA, Jeon S, Kwak YH, Kweon H, Jo YY, et al. (2013) Growth and osteoblastic differentiation of mesenchymal stem cells on silk scaffolds. Int. J. Indust. Entomol. 27(2), 303-311. https://doi.org/10.7852/ijie.2013.27.2.303
  5. Garay LB, Nembri A, Oro AL, Fassina VA, Saez CRN, Chiarello AS, et al. (2014) New technique to produce large amount of flat silk by biospinning. Agricultural Sciences 5, 1483-1490. https://doi.org/10.4236/as.2014.514159
  6. Gauthier N, Mandon N, Renault S, Benedet F. (2004) The Acrolepiopsis assectella silk cocoon: kairomonal function and chemical characterization. J. Insect. Physiol. 50(11), 1065-1074. https://doi.org/10.1016/j.jinsphys.2004.09.008
  7. Hakimi O, Knight DP, Vollrath F, Fadgama P. (2007) Spider and mulberry silkworm silks as compatible biomaterials. Compos. B. Eng. 38(3), 324-337. https://doi.org/10.1016/j.compositesb.2006.06.012
  8. Jo YY, Kim SK, Lee KG, Bae SM, Kim JH, Shin BS, et al. (2016) Cytocompatibility of silkworm cocoon layer extracts. Int. J. Indust. Entomol. 33(2), 96-102. https://doi.org/10.7852/ijie.2016.33.2.96
  9. Jung BH, Kang KD, Lee KH, Nahm JH. (1999) Manufacturing and application of the flat-ways spinned cocoon. Korean. J. Seric. Sci. 41(3), 196-200.
  10. Kaplan DL, Mello SM, Arcidiacono S, Fossey S, Senecal KWM. (1998) In: McGrath KKD, editor. Protein based materials. Boston: Birkhauser; p. 103-131.
  11. Mandal BB, Kundu SC. (2010) Biospinning by silkworms: Silk fiber matrices for tissue engineering applications. Acta Biomater. 6, 360-371. https://doi.org/10.1016/j.actbio.2009.08.035
  12. Maninsankar G, Ujjal M, Aniruddha M. (2008) Effect of environmental factors (temperature and humidity) on spinning worms of silkworm (Bombyx mori L). Res. J. Chem. Environ. 12(4), 12-18.
  13. Minoura N, Aiba S, Gotoh Y, Tsukada M, Imai Y. (1995) Attachment and growth of cultured fibroblast cells on silk protein matrices. J. Biomed. Mater. Res. A. 29(10), 1215-1221. https://doi.org/10.1002/jbm.820291008
  14. Nakajma T, Shikata M. (1983) The physical properties of flatways-spinned cocoons and various padding cloths of Japanese Obi. J. Seric. Sci. Jan. 52(2), 110-113.
  15. Offord C, Vollrath F, Holland C. (2016) Environmental effects on the construction and physical properties of Bombyx mori cocoons. J. Mater. Sci. 51(24), 10863-10872. https://doi.org/10.1007/s10853-016-0298-5
  16. Ramachandra YL, Bali G, Padmalatha R. (2001) Effect of temperature and relative humidity on spinning behavior of silkworm (Bombyx mori. L). Indian J. Exp. Biol. 39(1), 87-89.
  17. Sakabe H, Ito H, Miyamoto T, Noishiki Y, Ha WS. (1989) In vivo blood compatibility of regenerated silk fibroin. Seni Gakkaishi 45(11), 487-490. https://doi.org/10.2115/fiber.45.11_487
  18. Santin M, Motta A, Freddi G, Cannas M. (1999) In vitro evaluation of the inflammatory potential of the silk fibroin. J. Biomed. Mater. Res. A. 46(3), 382-289. https://doi.org/10.1002/(SICI)1097-4636(19990905)46:3<382::AID-JBM11>3.0.CO;2-R
  19. Sehnal F, Akai H. (1990) Insect silk glands: their types, development and function, and effects of environmental factors and morphogenetic hormones on them. Int. J. Insect Morphol. Embryol. 19(2), 79-132. https://doi.org/10.1016/0020-7322(90)90022-H
  20. Tazima Y. (1978) The silkworm: an important laboratory tool. Kodansha Scientific Books. Japan.
  21. Thurber AE, Omenetto FG, Kaplan DL. (2015) In vivo bioresponses to silk proteins. Biomaterials 71, 145-157. https://doi.org/10.1016/j.biomaterials.2015.08.039
  22. Um IC, Kweon HY, Hwang CM, Min BG, Park YH. (2002) Structural Characteristics and Properties of Silk Fibroin/Polyurethane Blend Films. Int. J. Indust. Entomol. 5(2), 163-170.
  23. Yun NK, Lee KH. (2013) Strategies of caffeine loading into silk fibroin film for weight loss patch. Int. J. Indust. Entomol. 27(2), 312-316. https://doi.org/10.7852/ijie.2013.27.2.312
  24. Zhao HP, Feng, XQ, Cui WZ, Zou FZ (2007) Mechanical properties of silkworm cocoon pelades. Engng Fract Mech, 74(12), 1953-1962. https://doi.org/10.1016/j.engfracmech.2006.06.010
  25. Zhou CZ, Confalonieri F, Medina N, Zivanovic Y, Esnault C, Yang T, et al. (2000) Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res. 28(12), 2413-2419. https://doi.org/10.1093/nar/28.12.2413