References
- Chen, J.T. and Wu, A.C. (2007), "Null-field approach for the multi-inclusion problem under antiplane shears", ASME J. Appl. Mech., 74, 469-487. https://doi.org/10.1115/1.2338056
- Chen, J.T., Lin, J.H., Kuo, S.R. and Chiu, Y.P. (2001), "Analytical study and numerical experiments for degenerate scale problems in boundary element method using degenerate kernels and circulants", Eng. Anal. Bound. Elem., 25, 819-828. https://doi.org/10.1016/S0955-7997(01)00064-9
- Chen, Y.Z. (2013), "Evaluation of degenerate scale for N-gon configuration in antiplane elasticity", Acta Mech. Solida Sinica, 26, 514-518. https://doi.org/10.1016/S0894-9166(13)60046-4
- Chen, Y.Z. (2016), "Evaluation of the degenerate scale in antiplane elasticity using null field BIE", Appl. Math. Lett., 54, 15-21. https://doi.org/10.1016/j.aml.2015.11.003
- Chen, Y.Z. and Lin, X.Y. (2010), "Degenerate scale problem for the Laplace equation in the multiply connected region with outer elliptic boundary", Acta Mech., 215, 225-233. https://doi.org/10.1007/s00707-010-0341-6
- Chen, Y.Z. and Wang, Z.X. (2013), "Properties of integral operators in complex variable boundary integral equation in plane elasticity", Struct. Eng. Mech., 45, 495-519. https://doi.org/10.12989/sem.2013.45.4.495
- Chen, Y.Z. Lin, X.Y. and Wang, Z.X. (2000), "Evaluation of the degenerate scale for BIE in plane elasticity and antiplane elasticity by using conformal mapping", Eng. Anal. Bound. Elem., 33, 147-158.
- Corfdir, A. and Bonnet, G. (2013), "Degenerate scale for the Laplace problem in the half plane; approximate logarithmic capacity for two distant boundaries", Eng. Anal. Bound. Elem., 37, 836-841. https://doi.org/10.1016/j.enganabound.2013.02.009
- Corfdir, A. and Bonnet, G. (2017), "Degenerate scale for 2D Laplace equation with Robin boundary condition", Eng. Anal. Bound. Elem., 80, 49-57. https://doi.org/10.1016/j.enganabound.2017.02.018
- He, W.J., Ding, H.J. and Hu, H.C. (1996), "Degenerate scales and boundary element analysis of two dimensional potential and elasticity problems", Comput. Struct., 60, 155-158. https://doi.org/10.1016/0045-7949(95)00343-6
- Kuo, S.R. Chen, J.T. and Kuo, S.K. (2013), "Linkage between the unit logarithmic capacity in the theory of complex variables and the degenerate scale in the BEM/BIEMs", Appl. Math. Lett., 26, 929-938. https://doi.org/10.1016/j.aml.2013.04.011
- Kuo, S.R., Chen, J.T., Lee, J.W. and Chen, Y.W. (2013), "Analytical derivation and numerical experiments of degenerate scale for regular N-gon domains in two-dimensional Laplace problems", Appl. Math. Comput., 219, 5668-5683.
- Vodicka, R. (2013), "An asymptotic property of degenerate scales for multiple holes in plane elasticity", Appl. Math. Comput., 220, 166-175.
- Vodicka, R. and Mantic, V. (2008), "On solvability of a boundary integral equation of the first kind for Dirichlet boundary value problems in plane elasticity", Comput. Mech., 41, 817-826. https://doi.org/10.1007/s00466-007-0202-x
- Vodicka, R. and Petrik, M. (2015), "Degenerate scales for boundary value problems in anisotropic elasticity", Int. J. Solid. Struct., 52, 209-219. https://doi.org/10.1016/j.ijsolstr.2014.10.004
- Zhang, X.S. and Zhang, X.X. (2008), "Exact solution for the hypersingular boundary integral equation of two-dimensional elastostaticcs", Struct. Eng. Mech., 30, 279-296. https://doi.org/10.12989/sem.2008.30.3.279