References
- H. Tsuji, A. K. Gupta, T. Hasewaga, M. Katsuki, K. Kishimoto, and M. Morita, High temperature air combustion: from energy conservation to pollution reduction; CRC Press, 2002.
- M. Mörtberg, W. Blasiak, and A. K. Gupta, Experimental investigation of flow phenomena of a single fuel jet in cross-flow during highly preheated air combustion conditions. J. Eng. Gas Turbines Power, 129(2) (2007) 556-564. https://doi.org/10.1115/1.2436558
- P. Sabia, M. Joannon, S. Fierro, A. Tregrossi, and A. Cavaliere, Hydrogen-enriched methane mild combustion in a well stirred reactor. Exp. Therm. Fluid Sci., 31 (2007) 469-475. https://doi.org/10.1016/j.expthermflusci.2006.04.016
- P. H. Lee and S. S. Hwang, Experimental Study for Oxygen Methane MILD Combustion in a Laboratory Scale Furnace, J. Korean Soc. Combust., 21(4) (2016) 6-15. https://doi.org/10.15231/jksc.2016.21.4.006
- A. De, E. Oldenhof and P. Sathiah, Numerical Simulation of Delft-Jet-in-Hot-Coflow (DJHC) Flames Using the Eddy Dissipation Concept Model for Turbulence-Chemistry Interction, Flow Turbulence Combust., 87(4) (2011) 537-567. https://doi.org/10.1007/s10494-011-9337-0
- A. Dongre, A. De, and R. Yadav, Numerical investigation of MILD combustion using multi-environment Eulerian probability density function modeling, Int. J. of spray and combust. dynamics, 6(4) (2014) 357-386. https://doi.org/10.1260/1756-8277.6.4.357
- E. Oldenhof, M. J. Tummers, E. H. van Veen, and D. J. E. M. Roekaerts, Ignition kernel formation and lift-off behaviour jet-in-hot-coflow flames, Combust. Flame., 157 (2010) 1167-1178. https://doi.org/10.1016/j.combustflame.2010.01.002
- E. Oldenhof, M. J. Tummers, E. H. van Veen, and D. J. E. M. Roekaerts, Role of entrainment in the stabilisation of jet-in-hot-coflow flames, Combust. Flame., 158 (2011) 1553-1563. https://doi.org/10.1016/j.combustflame.2010.12.018
- J. W. Labahn, D. Dovizio, and C. B. Devaud, Numerical simulation of the Delft-Jet-in-Hot-Coflow (DJHC) flame using Conditional Source-term Estimation, Proc. Combust. Inst., 35 (2015) 3547-3555. https://doi.org/10.1016/j.proci.2014.07.027
- S. Zahirović, R. Scharler, P. Kilpinen, I. Obernberger, Validation of flow simulation and gas combustion sub-models for the CFD-based prediction of NOx formation in biomass grate furnaces, Combust. Theory Mod., 15 (2010) 61-87. https://doi.org/10.1080/13647830.2010.524312
- S. R. Shabanian, P. R. Medwell, M. Rahimi, A. Frassoldati, A. Cuoci, Kinetic and fluid dynamic modeling of ethylene jet flames in diluted and heated oxidant stream combustion conditions, Appl. Therm. Eng., 52(2) (2013) 538-554. https://doi.org/10.1016/j.applthermaleng.2012.12.024
- S. B. Pope, PDF methods for turbulent reactive flows, Prog. Energy Combust. Sci., 11 (1985) 119-192. https://doi.org/10.1016/0360-1285(85)90002-4
-
H. Wang, and S. B. Pope, Large eddy simulation/probability density function modeling of a turbulent
$CH_4/H_2/N_2$ jet flame, Proc. Combust. Inst., 33 (2011) 1319-1330. https://doi.org/10.1016/j.proci.2010.08.004 - R. O. Fox, Computational models for turbulent reacting flows, Cambridge University Press, Cambridge, 2003.
- Q. Tang, W. Zhao, M. Bockelie, and R.O. Fox, Multi-environment probability density function method for modelling turbulent combustion using realistic chemical kinetics, Combust. Theory. Mod., 11 (2007) 889-907. https://doi.org/10.1080/13647830701268890
- L. Valino, A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow, Flow Turbul. Combust., 60 (1998) 157-172. https://doi.org/10.1023/A:1009968902446
- W. P. Jones, and V. N. Prasad, Large Eddy simulation of the sandia flame series (D, E and F) using the Eulerian stochastic field method, Combust. Flame., 157 (2010) 1621-1636. https://doi.org/10.1016/j.combustflame.2010.05.010
-
S. T. Jeon, and Y. M. Kim, Numerical Investigations of turbulent
$CH_4/H_2$ flames under MILD condition, The 51th KOSCO Symposium, Dec. 10th-11th 2015, 267-268. - J. W. Lee, and Y. M. Kim, DQMOM based PDF transport modeling for turbulent lifted nitrogen-diluted hydrogen jet flame with autoignition, Int. J. Hydrogen Energy, 37 (2012) 18498-18508. https://doi.org/10.1016/j.ijhydene.2012.09.004
- A. De, and A. Dongre, Assessment of turbulence-chemistry interaction models in MILD combustion regime. Flow Turbulence Combust., 94(2) (2015) 439-478. https://doi.org/10.1007/s10494-014-9587-8
- C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, Jr., V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, and M. Goldenberg, http://combustion.berkeley.edu/gri-mech/new21/version21/text21.html
- Akroyd J., Smith A. J., McGlashan L. R., and Kraft M. (2010) "Numerical investigation of DQ MoM-IEM as a turbulent reaction closure," Chem. Eng. Sci., vol. 65, pp.1915-1924. https://doi.org/10.1016/j.ces.2009.11.010
- H. S. Koo, P. Donde, and V. Raman, A Quadrature-based LES/Transported Probability Density Function Approach for Modeling Supersonic Combustion, Proc. Combust. Ins. 33 (2011) 2203-2210. https://doi.org/10.1016/j.proci.2010.07.058
- A. Mardani, S. Tabejamaat, and M. Ghamari, Numerical study of influence of molecular diffusion in the mild combustion regime. Combust. Theory Mod., 14 (2010) 747-774. https://doi.org/10.1080/13647830.2010.512959
- B. J. Isaac, A. Parente, C. Galletti, J. N. Thornock, P. J. Smith, and L. Tognotti, A novel methodology for chemical time scale evaluation with detailed chemical reaction kinetics. Energy Fuels, 27 (2013) 2255-2265. https://doi.org/10.1021/ef301961x