• 제목/요약/키워드: Multi-environment PDF approach

검색결과 3건 처리시간 0.017초

FGM기반 Multi-Environment PDF 모델을 이용한 메탄/공기 부상화염장의 Large Eddy Simulation (Large Eddy Simulation of a Lifted Methane/Air Flame using FGM-based Multi-Environment PDF Approach)

  • 김남수;김재현;김용모
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.265-266
    • /
    • 2015
  • The multi-environment PDF model coupled with flamelet generated manifolds(FGM) has been developed for a large eddy simulation of turbulent partially premixed lifted flame. This approach has a capability to realistically account for the transport and evolution of probability density function for mixture fraction and progress variable with the manageable computational burden. Using the tabulated chemistry, it is possible to track radical distributions which is important to predict autoignition process with the vitiated coflow environment. Numerical results indicate that the present yields the good agreement with experimental data in terms of mixture fraction, temperature, and species mass fractions.

  • PDF

Multi-environment PDF 모델을 이용한 MILD 연소과정 해석 (Multi-environment PDF Modeling for MILD Combustion Processes)

  • 지형근;전상태;김용모
    • 한국연소학회지
    • /
    • 제22권4호
    • /
    • pp.43-50
    • /
    • 2017
  • In this study, the multi-environment probability density function(MEPDF) approach has been applied to numerically investigate Delft-Jet-in-Hot-Coflow(DJHC) turbulent flames under Moderate or Intense Low-oxygen Dilution (MILD) combustion condition. Computations are made for two different jet velocities(Re = 4100 and 8800). In terms of mean axial velocity, temperature, and turbulent kinetic energy, numerical results are in reasonably good agreements with experimental data even if there exist the noticeable deviations in downstream region. Based on numerical results, the detailed discussions are made for the essential features of the non-visible flame structure and MILD combustion processes.

체결부 및 공차를 고려한 구조물의 확률기반 동적 특성 연구 (Probabilistic Analysis of Dynamic Characteristics of Structures considering Joint Fastening and Tolerance)

  • 원준호;강광진;최주호
    • 한국항공운항학회지
    • /
    • 제18권4호
    • /
    • pp.44-50
    • /
    • 2010
  • Structural vibration is a significant problem in many multi-part or multi-component assemblies. In aircraft industry, structures are composed of various fasteners, such as bolts, snap, hinge, weld or other fastener or connector (collectively "fasteners"). Due to these, prediction and design involving dynamic characteristics is quite complicated. However, the current state of the art does not provide an analytical tool to effectively predict structure's dynamic characteristics, because consideration of structural uncertainties (i.e. material properties, geometric tolerance, dimensional tolerance, environment and so on) is difficult and very small fasteners in the structure cause a huge amount of analysis time to predict dynamic characteristics using the FEM (finite element method). In this study, to resolve the current state of the art, a new approach is proposed using the FEM and probabilistic analysis. Firstly, equivalent elements are developed using simple element (e.g. bar, beam, mass) to replace fasteners' finite element model. Developed equivalent elements enable to explain static behavior and dynamic behavior of the structure. Secondly, probabilistic analysis is applied to evaluate the PDF (probability density function) of dynamic characteristics due to tolerance, material properties and so on. MCS (Monte-Carlo simulation) is employed for this. Proposed methodology offers efficiency of dynamic analysis and reality of the field as well. Simple plates joined by fasteners are taken as an example to illustrate the proposed method.