DOI QR코드

DOI QR Code

L-System Based Procedural Synthesis Method to Efficiently Generate Dense, Radial, and Concentric Cracks of Glass

유리의 미세, 방사상, 동심원 균열을 효율적으로 생성하기 위한 L-System 기반의 절차적 합성 방법

  • Received : 2017.06.25
  • Accepted : 2017.10.30
  • Published : 2017.12.08

Abstract

We propose a complex crack generation technique which is represented when impact is applied to glass. The crack patterns expressed when external forces are applied to the glass are classified into dense, radial, and concentric cracks, and we use procedural methods to efficiently represent crack patterns. Based on the input external force, we synthesize the crack example and apply the L-system based on this example to model the propagation shape of the crack in real time. Although physics based crack generation can analyze and model accurate cracks, it has a disadvantage of slow computation because of its high computational cost, and procedural methods have a relatively fast rate of continuity, but are not sufficient to capture accurate crack characteristics. We modeled cracks in glass using L-system to achieve both of these advantages. As a result, it realistically represented the microscopic crack patterns of glass in real time.

우리는 유리에 충격에 가해졌을 때 나타나는 복잡한 균열 생성 기법을 제안한다. 유리에 충격이 가해졌을 때 표현되는 균열 패턴은 미세(Dense), 방사상(Radial), 동심원(Concentric) 균열로 분류 할 수 있으며, 이 균열 패턴을 절차적 방법을 이용하여 효율적으로 표현한다. 외력이 발생하면 균열 예제 데이터를 기반으로 L-system을 응용하여 실시간으로 균열이 전파되는 모양을 합성한다. 물리 기반 균열 생성은 정확한 균열의 분석 및 모델링이 가능하지만 계산비용이 크기 때문에 계산속도가 느린 단점이 있으며, 절차적 방법은 비교적 빠른 계산 속도를 갖지만, 정확한 균열의 특징을 포착하기에는 충분하지 않다. 우리는 이 두 가지 장점을 모두 얻기 위해 L-system을 이용하여 유리의 균열을 모델링하고, 결과적으로 유리의 미세한 균열 패턴을 실시간 환경에서 사실적으로 표현한다.

Keywords

References

  1. J. F. O'Brien and J. K. Hodgins, "Graphical modeling and animation of brittle fracture," ser. SIGGRAPH, 1999, pp. 137-146.
  2. H.-H. Hsieh, W.-K. Tai, C.-C. Chiang, and M.-T.Yang, "Flexible and interactive crack-like patterns presentation on 3d objects," in International Symposium on Computer and Information Sciences. Springer, 2004, pp. 90-99.
  3. P. Prusinkiewicz and A. Lindenmayer, The algorithmic beautyofplants. Springer Science&Business Media,2012.
  4. D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, "Elastically deformable models," SIGGRAPH, vol. 21, no. 4, pp. 205-214, 1987.
  5. D. Terzopoulos and K. Fleischer, "Modeling inelastic deformation: Viscolelasticity, plasticity, fracture," in Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques, ser. SIGGRAPH, 1988, pp. 269-278.
  6. J. F. O'Brien, A. W. Bargteil, and J. K. Hodgins, "Graphical modeling and animation of ductile fracture," ser. SIGGRAPH, 2002, pp. 291-294.
  7. M. Muller and M. Gross, "Interactive virtual materials," in Proceedings of Graphics Interface 2004, 2004, pp. 239-246.
  8. M. Muller, M. Teschner, and M. Gross, "Physically-based simulation of objects represented by surface meshes," in Proceedings of the Computer Graphics International, 2004, pp. 26-33.
  9. N. Molino, Z. Bao, and R. Fedkiw, "A virtual node algorithm for changing mesh topology during simulation," ser. SIGGRAPH, 2004, pp. 385-392.
  10. A. Skjeltorp and P. Meakin, "Fracture in microsphere monolayers studied by experiment and computer simulation," Nature, vol. 335, no. 6189, pp. 424-426, 1988. https://doi.org/10.1038/335424a0
  11. K. Hirota, Y. Tanoue, and T. Kaneko, "Generation of crack patterns with a physical model," The Visual Computer, vol. 14, no. 3, pp. 126-137, 1998. https://doi.org/10.1007/s003710050128
  12. K. Hirota, Y. Tanoue, and T. Kaneko, "Simulation of three-dimensional cracks," The Visual Computer, vol. 16, no. 7, pp. 371-378, 2000. https://doi.org/10.1007/s003710000069
  13. P. Federl and P. Prusinkiewicz, "A texture model for cracked surfaces, with an application to tree bark," in Proceedings of Western Computer Graphics Symposium, 1996, pp. 23-29.
  14. S. Gobron and N. Chiba, "Crack pattern simulation based on 3d surface cellular automaton," in Computer Graphics International, 2000. Proceedings. IEEE, 2000, pp. 153-162.
  15. S. Gobron and N. Chiba, "Simulation of peeling using 3d-surface cellular automata,"in Computer Graphics and Applications, 2001. Proceedings. Ninth Pacific Conferenceon. IEEE,2001,pp.338- 347.
  16. E. Paquette, P. Poulin, and G. Drettakis, "The simulation of paint cracking and peeling," in Proceedings of Graphics Interface. Canadian Human-Computer Communications Society, 2002, p. 10.
  17. P. Federl and P. Prusinkiewicz, "Modelling fracture formationinbi-layered materials, with applications to tree barkand drying mud," in Proceedings of the 13th Western Computer Graphics Symposium, 2002.
  18. P. Federl and P. Prusinkiewicz, "Finite element model of fracture formation on growing surfaces," Computational Science-ICCS 2004, pp. 138-145, 2004.
  19. T. L. Anderson and T. Anderson, Fracture mechanics: fundamentals and applications. CRC press, 2005.
  20. T. Nishioka, "Computational dynamic fracture mechanics," International Journal of fracture, vol.86, no.1, pp.127-159, 1997. https://doi.org/10.1023/A:1007376924191
  21. A. Martinet, E. Galin, B. Desbenoit, and S. Akkouche, "Procedural modeling of cracks and fractures," in Shape Modeling Applications, 2004. Proceedings. IEEE, 2004, pp. 346-349.
  22. B. Desbenoit, E. Galin, and S. Akkouche, "Modeling cracks and fractures," The Visual Computer, vol. 21, no. 8, pp. 717-726, 2005. https://doi.org/10.1007/s00371-005-0317-z
  23. M. Muller, N. Chentanez, and T.-Y. Kim, "Real time dynamic fracture with volumetric approximate convex decompositions," ACM Transactions on Graphics (TOG), vol. 32, no. 4, p. 115, 2013.
  24. D. Mould, "Image-guided fracture," in Proceedings of Graphics Interface 2005. Canadian Human-Computer Communications Society, 2005, pp. 219-226.