DOI QR코드

DOI QR Code

A Study on Electrochemical Behaviors of Samarium Ions in the Molten LiCl-KCl Eutectic Using Optically Transparent Electrode

LiCl-KCl 용융염에서 광학적으로 투명한 전극을 이용한 사마륨 이온의 전기화학적 거동에 관한 연구

  • Received : 2017.09.13
  • Accepted : 2017.11.02
  • Published : 2017.12.30

Abstract

A spectroelectrochemical method has been applied to investigate the electrochemical behaviors and identify the kinds of samarium ions dissolved in high temperature molten LiCl-KCl eutectic. An optically transparent electrode (OTE) fabricated with a tungsten gauze as a working electrode has been used to conduct cyclic voltammetry and potential step chronoabsorptometry. Based on the reversibility of the redox reaction of $Sm^{3+}/Sm^{2+}$, which was determined from the cyclic voltammograms, the formal potential and the diffusion coefficient were calculated to be -1.99 V vs. $Cl_2/Cl^-$ and $2.53{\times}10^{-6}cm^2{\cdot}s^{-1}$, respectively. From the chronoabsorptometry results at the applied potential of -1.5 V vs. Ag/AgCl (1wt%), the characteristic peaks of absorption for samarium ions were determined to be 408.08 nm for $Sm^{3+}$ and 545.62 nm for $Sm^{2+}$. Potential step chronoabsorptometry was conducted using the anodic and the cathodic peak potentials from the voltammograms. Absorbance analysis at 545.63 nm shows that the diffusion coefficient of $Sm^{3+}$ is $2.15{\times}10^{-6}cm^2{\cdot}s^{-1}$, which is comparable to the value determined by cyclic voltammetry at the same temperature.

LiCl-KCl 용융염에서 광학적으로 투명한 텅스텐 망으로 제작된 작업전극에 대해 사마륨의 전기화학적 거동을 Cyclic voltammetry와 Potential step chronoabsorptometry의 전기화학적 및 분광전기화학적 방법으로 조사하였다. Cyclic voltammogram으로 결정된 $Sm^{3+}/Sm^{2+}$의 산화환원 반응의 가역성을 기반으로 형식전위와 확산계수를 계산하여 각각 -1.99 V vs. $Cl_2/Cl^-$$2.53{\times}10^{-6}cm^2{\cdot}s^{-1}$를 얻었다. 작업 전극에 -1.5 V vs. Ag/AgCl (wt%)로 전압을 인가하여 측정한 Chronoabsorptometry를 통해 사마륨 이온의 특성 파장으로 $Sm^{3+}$에 대해 408.08 nm, $Sm^{2+}$에 대해 545.62 nm를 확인하였다. Voltammogram에서 얻은 환원 피크 전압과 산화 피크 전압을 이용하여 Potential step chronoabsorptometry를 수행하였다. 545.63 nm의 흡광피크 값을 분석하여 $2.15{\times}10^{-6}cm^2{\cdot}s^{-1}$의 확산계수를 얻었으며 이 값은 동일한 온도에서 Cyclic voltammtry 분석으로 얻은 값과 큰 차이를 보이지 않았다. 실험결과로부터 고온 용융염에서 광학적으로 투명한 작업전극을 이용한 분광전기화학적 방법이 용융염에 용해된 이온의 종류를 확인하며 전기화학적 거동을 조사하는데 유용한 도구로 활용될 수 있음을 확인하였다.

Keywords

References

  1. K.C. Song, H. Lee, J.M. Hur, J.G. Kim, D.H. Ahn, and Y.Z. Cho, "Status of Pyroprocessing Technology Development in Korea", Nuclear Engineering and Technology, 42(2), 131-144 (2010). https://doi.org/10.5516/NET.2010.42.2.131
  2. J. Bae, H.O. Nam, H.S. Jung, S.Y. Choi, Y.H. Jeong, and I.S. Hwang, "Pyrochemical Cleaning of Final Wastes into Low and Intermediate Level Wastes", International Conference on Fast Reactors and Related Fuel Cycles: Challenges and Opportunities, December 7-10, 2009, Kyoto, Japan.
  3. C.A. Schroll, S. Chatterjee, T.G. Levitskaia, W.R. Heineman, and S.A. Bryan, "Electrochemistry and Spectroelectrochemistry of Europium(III) Chloride in 3LiCl-2KCl from 643 to 1123 K", Analytical Chemistry, 85, 9924-9931 (2013). https://doi.org/10.1021/ac402518p
  4. T. Fujii, T. Nagai, A. Uehara, and H. Yamana, "Electronic Absorption of Lanthanides in a Molten Chloride III. Absorption Characteristics of Trivalent Samarium, Dysprosium, Holmium, and Erbium in Various Molten Chlorides", J. Alloys and Compounds, 441, L10-L13 (2007). https://doi.org/10.1016/j.jallcom.2006.09.113
  5. T. P. DeAngelis and W. R. Heineman, "An Electrochemical Experiment Using an Optically Transparent Thin Layer Electrode", J. Chemical Education, 53(9), 594-597 (1976). https://doi.org/10.1021/ed053p594
  6. A.J. Bard and L.R. Faulkner, Electrochemical Methods: Fundamental and Application, 2nd Ed., John Wiley & Sons, Inc., New York (2001).
  7. C.V. Banks, M.R. Heusinkveld, and J.W. O'Laughlin, "Absorption Spectra of the Lanthanides in Fused Lithium Chloride-Potassium Chloride Eutectic", Analytical Chemistry, 33(9), 1235-1240 (1961). https://doi.org/10.1021/ac60177a032
  8. G. Cordoba and C. Caravaca, "An electrochemical study of samarium ion in the molten eutectic LiCl+KCl", J. Electroanalytical Chemistry, 572, 145-151 (2004). https://doi.org/10.1016/j.jelechem.2004.05.029