References
- Adl, S. M., Simpson, A. G., Farmer, M. A., Andersen, R. A., Anderson, O. R., Barta, J. R., Bowser, S. S., Brugerolle, G., Fensome, R. A., Fredericq, S., James, T. Y., Karpov, S., Kugrens, P., Krug, J., Lane, C. E., Lewis, L. A., Lodge, J., Lynn, D. H., Mann, D. G., McCourt, R. M., Mendoza, L., Moestrup, O., Mozley-Standridge, S. E., Nerad, T. A., Shearer, C. A., Smirnov, A. V., Spiegel, F. W. & Taylor, M. F. 2005. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 52:399-451. https://doi.org/10.1111/j.1550-7408.2005.00053.x
- Bennett, A. & Bogorad, L. 1973. Complementary chromatic adaptation in a filamentous blue-green alga. J. Cell. Biol. 58:1245-1257.
- Blouin, N. A., Brodie, J. A., Grossman, A. C., Xu, P. & Brawley, S. H. 2011. Porphyra: a marine crop shaped by stress. Trends. Plant. Sci. 16:29-37. https://doi.org/10.1016/j.tplants.2010.10.004
- Bowler, C., Allen, A. E., Badger, J. H., Grimwood, J., Jabbari, K., Kuo, A., Maheswari, U., Martens, C., Maumus, F. & Otillar, R. P. 2008. The phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239-244. https://doi.org/10.1038/nature07410
- Carretero-Paulet, L., Cairo, A., Botella-Pavia, P., Besumbes, O., Campos, N., Boronat, A. & Rodriguez-Concepcion, M. 2006. Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase. Plant Mol. Biol. 62:683-695. https://doi.org/10.1007/s11103-006-9051-9
- Carretero-Paulet, L., Cairo, A., Talavera, D., Saura, A., Imperial, S., Rodriguez-Concepcion, M., Campos, N. & Boronat, A. 2013. Functional and evolutionary analysis of DXL1, a non-essential gene encoding a 1-deoxy-D-xylulose 5-phosphate synthase like protein in Arabidopsis thaliana. Gene 524:40-53. https://doi.org/10.1016/j.gene.2012.10.071
- Cavalier-Smith, T. 1999. Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J. Eukaryot. Microbiol. 46:347-366. https://doi.org/10.1111/j.1550-7408.1999.tb04614.x
- Chan, C. X., Blouin, N. A., Zhuang, Y., Zäuner, S., Prochnik, S. E., Lindquist, E., Lin, S., Benning, C., Lohr, M., Yarish, C., Gantt, E., Grossman, A. R., Lu, S., Müller, K., Stiller, J. W., Brawley, S. H. & Bhattacharya, D. 2012. Porphyra (Bangiophyceae) transcriptomes provide insights into red algal development and metabolism. J. Phycol. 48:1328-1342. https://doi.org/10.1111/j.1529-8817.2012.01229.x
- Chen, C., Dai, Z., Xu, Y., Ji, D. & Xie, C. 2016. Cloning, expression, and characterization of carbonic anhydrase genes from Pyropia haitanensis (Bangiales, Rhodophyta). J. Appl. Phycol. 28:1403-1417. https://doi.org/10.1007/s10811-015-0646-x
- Cock, J. M., Sterck, L., Rouze, P., Scornet, D., Allen, A. E., Amoutzias, G., Anthouard, V., Artiguenave, F., Aury, J. M. & Badger, J. H. 2010. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617-621. https://doi.org/10.1038/nature09016
- Cordoba, E., Porta, H., Arroyo, A., San Roman, C., Medina, L., Rodriguez-Concepcion, M. & Leon, P. 2011. Functional characterization of the three genes encoding 1-deoxy-D-xylulose 5-phosphate synthase in maize. J. Exp. Bot. 62:2023-2038. https://doi.org/10.1093/jxb/erq393
- Davies, F. K., Jinkerson, R. E. & Posewitz, M. C. 2015. Toward a photosynthetic microbial platform for terpenoid engineering. Photosynth. Res. 123:265-284. https://doi.org/10.1007/s11120-014-9979-6
- de Oliveira, L. S., Gregoracci, G. B., Silva, G. G. Z., Salgado, L. T., Filho, G. A., Alves-Ferreira, M., Pereira, R. C. & Thompson, F. L. 2012. Transcriptomic analysis of the red seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta) and its microbiome. BMC Genomics 13:487. https://doi.org/10.1186/1471-2164-13-487
- Frommolt, R., Werner, S., Paulsen, H., Goss, R., Wilhelm, C., Zauner, S., Maier, U. G., Grossman, A. R., Bhattacharya, D. & Lohr, M. 2008. Ancient recruitment by chromists of green algal genes encoding enzymes for carotenoid biosynthesis. Mol. Biol. Evol. 25:2653-2667. https://doi.org/10.1093/molbev/msn206
- Grauvogel, C. & Petersen, J. 2007. Isoprenoid biosynthesis authenticates the classification of the green alga Mesostigma viride as an ancient streptophyte. Gene 396:125-133. https://doi.org/10.1016/j.gene.2007.02.020
- Hans, J., Hause, B., Strack, D. & Walter, M. H. 2004. Cloning, characterization, and immunolocalization of a mycorrhiza-inducible 1-deoxy-d-xylulose 5-phosphate reductoisomerase in arbuscule-containing cells of maize. Plant Physiol. 134:614-624. https://doi.org/10.1104/pp.103.032342
- Huang, W., Ye, J., Zhang, J., Lin, Y., He, M. & Huang, J. 2016. Transcriptome analysis of Chlorella zofingiensis to identify genes and their expressions involved in astaxanthin and triacylglycerol biosynthesis. Algal Res. 17:236-243. https://doi.org/10.1016/j.algal.2016.05.015
- Kuzuyama, T., Shimizu, T., Takahashi, S. & Seto, H. 1998. Fosmidomycin, a specific inhibitor of 1-deoxy-d-xylulose 5-phosphate reductoisomerase in the nonmevalonate pathway for terpenoid biosynthesis. Tetrahedron. Lett. 39:7913-7916. https://doi.org/10.1016/S0040-4039(98)01755-9
- Liu, J., Xu, Y., Liang, L. & Wei, J. 2015. Molecular cloning, characterization and expression analysis of the gene encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase from Aquilaria sinensis (Lour.) Gilg. J. Genet. 94:239-249. https://doi.org/10.1007/s12041-015-0521-1
- Lohr, M., Schwender, J. & Polle, J. E. W. 2012. Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci. 185-186:9-22. https://doi.org/10.1016/j.plantsci.2011.07.018
- Luo, Q., Zhu, Z., Zhu, Z., Yang, R., Qian, F., Chen, H. & Yan, X. 2014. Different responses to heat shock stress revealed heteromorphic adaptation strategy of Pyropia haitanensis (Bangiales, Rhodophyta). PLoS ONE 9:e94354. https://doi.org/10.1371/journal.pone.0094354
- Masse, G., Belt, S. T., Rowland, S. J. & Rohmer, M. 2004. Isoprenoid biosynthesis in the diatoms Rhizosolenia setigera (Brightwell) and Haslea ostrearia (Simonsen). Proc. Natl. Acad. Sci. U. S. A. 101:4413-4418. https://doi.org/10.1073/pnas.0400902101
- Matsuzaki, M., Misumi, O., Shin-I, T., Maruyama, S., Takahara, M., Miyagishima, S. Y., Mori, T., Nishida, K., Yagisawa, F., Nishida, K., Yoshida, Y., Nishimura, Y., Nakao, S., Kobayashi, T., Momoyama, Y., Higashiyama, T., Minoda, A., Sano, M., Nomoto, H., Oishi, K., Hayashi, H., Ohta, F., Nishizaka, S., Haga, S., Miura, S., Morishita, T., Kabeya, Y., Terasawa, K., Suzuki, Y., Ishii, Y., Asakawa, S., Takano, H., Ohta, N., Kuroiwa, H., Tanaka, K., Shimizu, N., Sugano, S., Sato, N., Nozaki, H., Ogasawara, N., Kohara, Y. & Kuroiwa, T. 2004. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653-657. https://doi.org/10.1038/nature02398
- Okada, K., Saito, T., Nakagawa, T., Kawamukai, M. & Kamiya, Y. 2000. Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiol. 122:1045-1056. https://doi.org/10.1104/pp.122.4.1045
-
Paniagua-Michel, J., Capa-Robles, W., Olmos-Soto, J. & Gutierrez-Millan, L. E. 2009. The carotenogenesis pathway via the isoprenoid-
${\beta}$ -carotene interference approach in a new strain of Dunaliella salina isolated from Baja California Mexico. Mar. Drugs 7:45-56. https://doi.org/10.3390/md7010045 - Pattanaik, B. & Lindberg, P. 2015. Terpenoids and their biosynthesis in cyanobacteria. Life (Basel) 5:269-293.
- Peng, G., Wang, C., Song, S., Fu, X., Azam, M., Grierson, D. & Xu, C. 2013. The role of 1-deoxy-d-xylulose-5-phosphate synthase and phytoene synthase gene family in citrus carotenoid accumulation. Plant Physiol. Biochem. 71:67-76. https://doi.org/10.1016/j.plaphy.2013.06.031
- Reyes-Prieto, A., Hackett, J. D., Soares, M. B., Bonaldo, M. F. & Bhattacharya, D. 2006. Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions. Curr. Biol. 16:2320-2325. https://doi.org/10.1016/j.cub.2006.09.063
- Rodriguez-Concepcion, M., Ahumada, I., Diez-Juez, E., Sauret-Güeto, S., Lois, L. M., Gallego, F., Carretero-Paulet, L., Campos, N. & Boronat, A. 2001. 1-Deoxy-Dxylulose 5-phosphate reductoisomerase and plastid isoprenoid biosynthesis during tomato fruit ripening. Plant J. 27:213-222. https://doi.org/10.1046/j.1365-313x.2001.01089.x
- Scolnik, P. A. & Bartley, G. E. 1994. Nucleotide sequence of an Arabidopsis cDNA for geranylgeranyl pyrophosphate synthase. Plant Physiol. 104:1469-1470. https://doi.org/10.1104/pp.104.4.1469
- Slamovits, C. H. & Keeling, P. J. 2008. Plastid-derived genes in the nonphotosynthetic alveolate Oxyrrhis marina. Mol. Biol. Evol. 25:1297-1306. https://doi.org/10.1093/molbev/msn075
- Sutherland, J. E., Lindstrom, S. C., Nelson, W. A., Brodie, J., Lynch, M. D. J., Hwang, M. S., Choi, H. -G., Miyata, M., Kikuchi, N., Oliveira, M. C., Farr, T., Neefus, C., Mols-Mortensen, A., Milstein, D. & Müller, K. M. 2011. A new look at an ancient order: generic revision of the Bangiales (Rhodophyta). J. Phycol. 47:1131-1151. https://doi.org/10.1111/j.1529-8817.2011.01052.x
- Tong, Y., Su, P., Zhao, Y., Zhang, M., Wang, X., Liu, Y., Zhang, X., Gao, W. & Huang, L. 2015. Molecular cloning and characterization of DXS and DXR genes in the terpenoid biosynthetic pathway of Tripterygium wilfordii. Int. J. Mol. Sci. 16:25516-25535. https://doi.org/10.3390/ijms161025516
- Vranova, E., Coman, D. & Gruissem, W. 2013. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu. Rev. Plant. Biol. 64:665-700. https://doi.org/10.1146/annurev-arplant-050312-120116
- Wang, L., Mao, Y., Kong, F., Cao, M. & Sun, P. 2015. Genomewide expression profiles of Pyropia haitanensis in response to osmotic stress by using deep sequencing technology. BMC Genomics 16:1012. https://doi.org/10.1186/s12864-015-2226-5
- Wellburn, A. R. 1994. The spectral determination of chlorophylls a, and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant. Physiol. 144:307-313. https://doi.org/10.1016/S0176-1617(11)81192-2
- Xiang, S., Usunow, G., Lange, G., Busch, M. & Tong, L. 2007. Crystal structure of 1-deoxy-d-xylulose 5-phosphate synthase, a crucial enzyme for isoprenoids biosynthesis. J. Biol. Chem. 282:2676-2682. https://doi.org/10.1074/jbc.M610235200
- Xie, C., Li, B., Xu, Y., Ji, D. & Chen, C. 2013. Characterization of the global transcriptome for Pyropia haitanensis (Bangiales, Rhodophyta) and development of cSSR markers. BMC Genomics 14:107. https://doi.org/10.1186/1471-2164-14-107
- Xu, D., Qiao, H., Zhu, J., Xu, P., Liang, C., Zhang, X., Ye, N. & Yang, W. 2012. Assessment of photosynthetic performance of Porphyra yezoensis (Bangiales, Rhodophyta) in conchocelis phase. J. Phycol. 48:467-470. https://doi.org/10.1111/j.1529-8817.2012.01121.x
- Xu, Y., Liu, J., Liang, L., Yang, X., Zhang, Z., Gao, Z., Sui, C. & Wei, J. 2014. Molecular cloning and characterization of three cDNAs encoding 1-deoxy-d-xylulose-5- phosphate synthase in Aquilaria sinensis (Lour.) Gilg. Plant Physiol. Biochem. 82:133-141. https://doi.org/10.1016/j.plaphy.2014.05.013
- Yang, L. -E., Huang, X. -Q., Lu, Q. -Q., Zhu, J. -Y. & Lu, S. 2016. Cloning and characterization of the geranylgeranyl diphosphate synthase (GGPS) responsible for carotenoid biosynthesis in Pyropia umbilicalis. J. Appl. Phycol. 28:671-678. https://doi.org/10.1007/s10811-015-0593-6
- Yang, L. -E., Jin, Q. -P., Xiao, Y., Xu, P. & Lu, S. 2013. Improved methods for basic molecular manipulation of the red alga Porphyra umbilicalis (Rhodophyta: Bangiales). J. Appl. Phycol. 25:245-252. https://doi.org/10.1007/s10811-012-9858-5
- Zhang, B. Y., Zhu, D. L., Wang, G. C. & Peng, G. 2014. Characterization of the AOX gene and cyanide-resistant respiration in Pyropia haitanensis (Rhodophyta). J. Appl. Phycol. 26:2425-2433. https://doi.org/10.1007/s10811-014-0274-x