DOI QR코드

DOI QR Code

Low Cost and Portable Parahydrogen Generator for the PHIP

  • Kwon, Soonmo (Department of Chemistry, Korea Military Academy) ;
  • Min, Sein (Department of Chemistry, Seoul Women's University) ;
  • Chae, Heelim (Department of Chemistry, Seoul Women's University) ;
  • Namgoong, Sung Keon (Department of Chemistry, Seoul Women's University) ;
  • Jeong, Keunhong (Department of Chemistry, Korea Military Academy)
  • Received : 2017.10.10
  • Accepted : 2017.11.12
  • Published : 2017.12.20

Abstract

In the developed NMR hyperpolarization techniques, Parahydrogen-Induced Polarization (PHIP) technique is widely utilized to overcome the low sensitivity of the NMR/MRI. Parahydrogen generator is essential to produce high spin order of parahydrogen molecule. Commercial parahydrogen generator is well developed with user-friendly systems. However, it has drawbacks of long preparation time (~ 2h including cooling down time of 1h) and high cost (~ 200 million won) for the commercial setup. We designed a simple and portable parahydrogen generating system with low cost (~ 2 million won), which produce polarization in less than 1 min. With the designed parahydrogen generator, we successfully performed the PHIP with Wilkinson's catalyst on styrene. This study will broaden the parahydrogen based polarization transfer study on many researchers by providing the simple portable and low cost parahydrogen generator.

Keywords

References

  1. H. Ko, G. Gong, G. Jeong, I. Cho, H. Seo, and Y. Lee, J. Kor. Magn. Reson. Soc. 19, 124 (2015) https://doi.org/10.6564/JKMRS.2015.19.3.124
  2. J. Im and J. H. Lee, J. Kor. Magn. Reson. Soc. 21, 1 (2017) https://doi.org/10.6564/JKMRS.2017.21.1.01
  3. T. Walker and W. Happer, Rev. Mod. Phys. 69, 629 (1997) https://doi.org/10.1103/RevModPhys.69.629
  4. C. Witte and L. Schroeder, NMR Biomed. 26, 788 (2013) https://doi.org/10.1002/nbm.2873
  5. C. Bowers and D. Weitekamp, Phys. Rev. Lett. 57, 2645 (1986) https://doi.org/10.1103/PhysRevLett.57.2645
  6. J. Natterer and J. Bargon, Prog. Nucl. Magn. Reson. Spectrosc. 31, 293 (1997) https://doi.org/10.1016/S0079-6565(97)00007-1
  7. K. Jeong, J. Kor. Magn. Reson. Soc. 20, 114 (2016) https://doi.org/10.6564/JKMRS.2016.20.4.114
  8. K. V. Kovtunov, O. G. Salnikov, V. V. Zhivonitko, I. V. Skovpin, V. I. Bukhtiyarov, and I. V. Koptyug, Top Catal. 59, 1686 (2016) https://doi.org/10.1007/s11244-016-0688-6
  9. U. Obenaus, S. Lang, R. Himmelmann, and M. Hunger, J. Phys. Chem. C 121, 9953 (2017) https://doi.org/10.1021/acs.jpcc.7b01899
  10. O. G. Salnikov, K. V. Kovtunov, and I. V. Koptyug, Sci. Rep. 5, 13930 (2015) https://doi.org/10.1038/srep13930
  11. F. Reineri, T. Boi, and S. Aime, Nature Comm. 6, 5858 (2015) https://doi.org/10.1038/ncomms6858
  12. T. C. Eisenschmid, R. U. Kirss, P. P. Deutsch, S. I. Hommeltoft, R. Eisenberg, J. Bargon, R. G. Lawler, and A. L. Balch, J. Am. Chem. Soc. 109, 8089 (1987) https://doi.org/10.1021/ja00260a026
  13. T. Theis, M. L. Truong, A. M. Coffey, R. V. Shchepin, K. W. Waddell, F. Shi, B. M. Goodson, W. S. Warren, and E. Y. Chekmenev, J. Am. Chem. Soc. 137, 1404 (2015). https://doi.org/10.1021/ja512242d
  14. W. Jiang, L. Lumata, W. Chen, S. Zhang, Z. Kovacs, A. D. Sherry, and C. Khemtong, Sci. Rep. B 5, 9104 (2015) https://doi.org/10.1038/srep09104
  15. T. Theis, M. Truong, A. M. Coffey, E. Y. Chekmenev, and W. S. Warren, J. Magn. Reson. 248, 23 (2014) https://doi.org/10.1016/j.jmr.2014.09.005
  16. F. Shi, A. M. Coffey, K. W Waddell. E. Y. Chekmenev, and B. M. Goodson, Angew. Chem. Int. Ed. 53, 7495 (2014) https://doi.org/10.1002/anie.201403135
  17. J. A. Osborn and G. Wilkinson, Inorg. Synth. 10, 67 (1967).
  18. S. Bouguet-Bonnet, F. Reineri, and D. Canet, J. Chem. Phys. 130, 234507 (2009) https://doi.org/10.1063/1.3152843