DOI QR코드

DOI QR Code

ITS2 DNA Sequence Analysis for Eight Species of Delphacid Planthoppers and a Loop-mediated Isothermal Amplification Method for the Brown Planthopper-specific Detection

멸구과 8종의 ITS2 DNA 염기서열 비교 분석과 고리매개등온증폭법(LAMP)을 이용한 벼멸구 특이 진단법

  • Seo, Bo Yoon (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Park, Chang Gyu (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Koh, Young-Ho (Ilsong Institute of Life Science, Hallym University) ;
  • Jung, Jin Kyo (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Cho, Jumrae (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kang, Chanyeong (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration)
  • 서보윤 (국립농업과학원 작물보호과) ;
  • 박창규 (국립농업과학원 작물보호과) ;
  • 고영호 (한림대학교 일송생명과학연구소) ;
  • 정진교 (국립식량과학원 재배환경과) ;
  • 조점래 (국립농업과학원 작물보호과) ;
  • 강찬영 (국립농업과학원 작물보호과)
  • Received : 2017.09.11
  • Accepted : 2017.11.08
  • Published : 2017.12.01

Abstract

Estimates of evolutionary sequence divergence and inference of a phylogenetic tree for eight delphacid planthopper species were based on the full-length nucleotide sequence of the internal transcribed spacer 2 (ITS2) region. Size of the ITS2 DNA sequence varied from 550 bp in Sogatella furcifera to 699 bp in Nilaparvata muiri. Nucleotide sequence distance ($d{\pm}S.E.$) was lowest between N. muiri and N. bakeri ($0.001{\pm}0.001$), and highest between Ecdelphax cervina and Stenocranus matsumurai ($0.579{\pm}0.021$). Sequence distance between N. lugens and other planthoppers ranged from $0.056{\pm}0.008$ (N. muiri) to $0.548{\pm}0.021$ (S. matsumurai). In the neighbor-joining phylogenetic tree, all planthoppers were clustered separately into a species group, except N. muiri and N. bakeri. The ITS2 nucleotide sequence of N. lugens was used to design four loop-mediated isothermal amplification (LAMP) primer sets (BPH-38, BPH-38-1, BPH-207, and BPH-92) for N. lugens species-specific detection. After the LAMP reaction of three rice planthoppers, N. lugens, S. furcifera, and Laodelphax striatellus, with the four LAMP primer sets for 60 min at $65^{\circ}C$, LAMP products were observed in the genomic DNA of N. lugens only. In the BPH-92 LAMP primer set, the fluorescence relative to that of the negative control differed according to the amount of DNA (0.1 ng, 10 ng, and 100 ng) and incubation duration (20 min, 30 min, 40 min, and 60 min). At $65^{\circ}C$ incubation, the difference was clearly observed after 40 min with 10 ng and100 ng, but with a 60-min incubation period, the minimum DNA needed was 0.1 ng. However, there was little difference in fluorescence among all DNA amounts tested with 20 or 30 min incubations.

멸구과(Delphacidae) 8종의 internal transcribed spacer 2 (ITS2) DNA 염기서열로 종간 차이 추정값을 비교하고 분자계통수를 추론하였다. ITS2 DNA 염기서열 길이는 종(species)마다 550 bp (흰등멸구)에서 699 bp (겨풀멸구)까지 차이를 보였다. 같은 Nilaparvata 속의 겨풀멸구와 벼멸구붙이 사이의 염기서열 차이 추정값($d{\pm}S.E.$)은 $0.001{\pm}0.001$로 가장 낮았으며, 사슴멸구와 일본멸구 사이는 $0.579{\pm}0.021$로 가장 높았다. 벼멸구와 다른 멸구류들과의 종간 염기서열 차이 추정값은 $0.056{\pm}0.008$ (겨풀멸구)에서부터 $0.548{\pm}0.021$ (일본멸구)로 구분되었다. 반면, Neighbor-joining 방법으로 추론된 분자계통수에서는 겨풀멸구와 벼멸구붙이를 제외하고 나머지 멸구류들은 독립된 다른 그룹으로 분지되었다. 벼멸구의 ITS2 염기서열을 참고하여 벼멸구 특이 고리매개등온증폭(loop-mediated isothermal amplification, LAMP) 프라이머 4 세트(BPH-38, BPH-38-1, BPH-207 및 BPH-92)를 제작하였다. 이들 각각을 벼멸구, 흰등멸구 및 애멸구의 게놈 DNA와 $65^{\circ}C$에서 60분간 반응시켰을 때, 벼멸구 시료에서만 증폭 산물들이 관찰되었다. BPH-92 LAMP 프라이머 세트로 $65^{\circ}C$에서 벼멸구 DNA의 양(0.1 ng, 1 ng, 10 ng, 100 ng)과 반응시간(20분, 30분, 40분, 60분)을 달리하여 형광반응을 관찰하였을 때, 20분과 30분 반응에서는 100 ng 까지에서도 발광여부 구별이 어려웠다. 그러나 40분 반응에서는 10 ng 이상에서, 60분 반응에서는 0.1 ng 이상에서 발광여부가 명확히 구별되었다.

Keywords

References

  1. Bonizzoni, M., Afrane, Y., Yan, G., 2009. Loop-mediated isothermal amplification (LAMP) for rapid identification of Anopheles gambiae and Anopheles arabiensis mosquitoes. Am. J. Trop. Med. Hyg. 81, 1030-1034. https://doi.org/10.4269/ajtmh.2009.09-0333
  2. Cabauatan, P.Q., Cabunagan, R.C., Choi, I.R., 2009. Rice viruses transmitted by the brown planthopper Nilaparvata lugens Stal, in: Heong, K.L., Hardy, B. (Eds.), Planthoppers: new threats to the sustainability of intensive rice production systems in Asia. International Rice Research Institute, Los Banos, pp. 357-368.
  3. Dickey, A.M., Osborne, L.S., Shatters, Jr., R.G., Mckenzie, C.L., 2013. Identification of the Meam1 cryptic species of Bemisia tabaci (Hemiptera: Aleyrodidae) by loop-mediated isothermal amplification. Fla. Entomol. 96, 756-764. https://doi.org/10.1653/024.096.0308
  4. Hillis, D.M., Dixon, M.T., 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. Q. Rev. Biol. 66, 411-426. https://doi.org/10.1086/417338
  5. Kim, H.Y., Park, C.G., Han, M.W., Uhm, K.B., Woo, K.S., 2002. Development of a hypertext-based polychotomous key for the identification of planthoppers caught by light trap in paddy fields. Korean J. Appl. Entomol. 41, 75-83.
  6. Mori, Y., Kanda, H., Notomi, T., 2013. Loop-mediated isothermal amplification (LAMP): recent progress in research and development. J. Infect. Chemother. 19, 404-411. https://doi.org/10.1007/s10156-013-0590-0
  7. Nagamine, K., Hase, T., Notomi, T., 2002. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes 16, 223-229. https://doi.org/10.1006/mcpr.2002.0415
  8. Njiru, Z.K., 2012. Loop-mediated isothermal amplification technology: towards point of care diagnostics. PLoS Negl. Trop. Dis. 6(6): e1572, doi:10.1371/journal.pntd.0001572.
  9. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., Hase, T., 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res., 28, e63. https://doi.org/10.1093/nar/28.12.e63
  10. Seo, B.Y., Jung, J.K., Park, K.J., Cho, J.R., Lee, G.S., Jung, C.R., 2014. Molecular identification of Trichogramma (Hymenoptera: Trichogrammatidae) egg parasitoids of the Asian corn borer Ostrinia furnacalis, based on ITS2 rDNA sequence analysis. Korean J. Appl. Entomol. 53, 247-260. https://doi.org/10.5656/KSAE.2014.06.0.012
  11. Seo, B.Y., Kwon, Y.-H., Jung, J.K., Kim, G.-H., 2009. Electrical penetration graphic waveforms in relation to the actual positions of the stylet tips of Nilaparvata lugens in rice tissue. J. Asia-Pac. Entomol. 12, 89-95. https://doi.org/10.1016/j.aspen.2009.02.002
  12. Sogawa, K., 1982. The rice brown planthopper: feeding physiology and host plant interactions. Annu. Rev. Entomol. 27, 49-73. https://doi.org/10.1146/annurev.en.27.010182.000405
  13. Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
  14. Uhm, K.B., Park, J.S., Lee, Y.I., Choi, K.M., Lee, M.H., Lee, J.O., 1988. Relationship between some weather conditions and immigration of the brown planthopper, Nilaparvata lugens Stal. Korean J. Appl. Entomol. 27, 200-210.
  15. White, T.J., Bruns, T., Lee, S., Taylor, J., 1990. Amplification and direct sequencing of fungal ribosomal genes for phylogenetics, in: Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. (Eds.), PCR protocols, a guide to methods and applications. Academic Press, San Diego, California, pp. 315-322.
  16. Wilson, M.R., Claridge, M.F., 1991. Handbook for the identification of leafhoppers and planthoppers of rice. CAB International, Wallingford, UK.
  17. Zhang, X., Lowe, S.B., Gooding, J.J., 2014. Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP). Biosens. Bioelectron. 61, 491-499. https://doi.org/10.1016/j.bios.2014.05.039