DOI QR코드

DOI QR Code

Analysis of Correlation between Geometry Elements for the Efficient Use of Satellite Stereo Images

효율적인 스테레오 위성자료 활용을 위한 기하요소 간 상관성 분석

  • Jeong, Jaehoon (Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology)
  • Received : 2016.08.16
  • Accepted : 2016.10.20
  • Published : 2016.10.31

Abstract

This paper proposes the results of analysis of correlation between satellite geometry elements for an effective use of satellite images. To achieve accurate positional information, stereo images have normal range of convergence and BIE (BIsector Elevation) angles which are greatly influenced by azimuth and elevation angle of individual image. In this paper, the variations of convergence and BIE angles are estimated according to azimuth angle differences between two images and each elevation angle. The analysis provided strong support for predicting stereo geometry without complex analysis of epiploar geometry or mathematics. The experiment results showed that more than 150°, 130°, and 100° azimuth angle differences need to be constructed when elevation angle of two images is 50°, 60°, and 70°, respectively, in order to make the convergence and BIE angle within normal range. The results are expected to be fully used for various application using stereo images.

이 논문에서는 스테레오 위성자료의 효율적 활용을 위한 위성 기하요소간 상관성 분석결과를 제시한다. 정밀한 위치 정보 취득을 위해서는 스테레오 자료가 적정 범위의 수렴각과 이등분선고도각을 형성해야 하며, 이러한 기하요소는 개별 센서의 방위각과 고도각에 의해 큰 영향을 받는다. 논문에서는 스테레오를 구성하는 두 센서의 고도각과 센서간 방위각 차이에 따른 수렴각과 이등분선고도각 변이를 추정하였다. 이러한 분석을 통해 복잡한 에피폴라 기하구조 분석이나 수식적용 없이 두 센서의 방위각 및 고도각 정보 확인만으로 스테레오 기하요소를 추정할 수 있는 근거를 제시하였다. 실험 결과 수렴각과 이등분선고도각이 적정 범위 내로 형성되기 위해서는 두 센서의 고도각이 50° 일 때는 방위각 차이가 150° 이상, 60° 일 때는 방위각 차이가 130° 이상, 고도각이 70° 일 때는 100° 이상이어야 함을 각각 보여주었다. 실험결과는 향후 스테레오 위성자료를 이용한 다양한 분야에 효과적으로 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. Aguilar, M. A., Aguilar, F. J., and del Mar Saldana, M. (2012), Geopositioning accuracy assessment of GeoEye-1 panchromatic and multispectral imagery, Photogrammetric Engineering & Remote Sensing, Vol. 78, No. 3, pp. 247-258. https://doi.org/10.14358/PERS.78.3.247
  2. Aguilar, M. A., Saldana, M. M., and Aguilar, F. J. (2013), Assessing geometric accuracy of the orthorectification process from GeoEye-1 and WorldView-2 panchromatic images, International Journal of Applied Earth Observation and Geoinformation, Vol. 21, pp. 427-435. https://doi.org/10.1016/j.jag.2012.06.004
  3. Büyüksalih, G., Koçak, G., Topan, H., Oruç, M., and Marangoz, A. (2005), Spot revisited: Accuracy assessment, DEM generation and validation from stereo SPOT-5 HRG images, Photogrammetric Record, Vol. 20, No. 110, pp. 130–146. https://doi.org/10.1111/j.1477-9730.2005.00314.x
  4. Chen, L., Teo, T., and Liu, C. (2006), The geometrical comparisons of RSM and RFM for FORMOSAT-2 satellite images, Photogrammetric Engineering & Remote Sensing, Vol. 72, No. 5, pp. 573-580. https://doi.org/10.14358/PERS.72.5.573
  5. Choi, S. and Kang, J. (2012), Accuracy investigation of RPC-based block adjustment using high resolution satellite images GeoEye-1 and WorldView-2, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 30, No. 2, pp. 107-116. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2012.30.2.107
  6. Grodecki, J., and Dial, G. (2003), Block adjustment of high-resolution satellite images described by rational polynomials, Photogrammetric Engineering & Remote Sensing, Vol. 69, No. 1, pp. 59-68. https://doi.org/10.14358/PERS.69.1.59
  7. Fraser, C.S., Hanley, H.B., and Yamakawa, T. (2002), Three-dimensional geopositioning accuracy of IKONOS imagery. Photogrammetric Record, Vol. 17, No. 99, pp. 465–480. https://doi.org/10.1111/0031-868X.00199
  8. Fraser, C.S. and Ravanbakhsh, M. (2009), Georeferencing accuracy of GeoEye-1 imagery, Photogrammetric Engineering & Remote Sensing, Vol. 75, No. 6, pp. 634-640.
  9. Jeong, J. (2015), A study on the method for three-dimensional geo-positioning using heterogeneous satellite stereo images, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 33, No. 4, pp. 325-331. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2015.33.4.325
  10. Jeong, J., Kim, J., and Kim, T. (2014), Analysis of geolocation accuracy of KOMPSAT-3 imagery, Korean Journal of Remote Sensing, Vol. 30, No. 1, pp. 37-45. (in Korean with English abstract) https://doi.org/10.7780/kjrs.2014.30.1.4
  11. Jeong, J. and Kim, T. (2009), Comparison of orbit-attitude model between Spot and Kompsat-2 imagery, Korean Journal of Remote Sensing, Vol. 25, No. 2, pp. 133-143. (in Korean with English abstract) https://doi.org/10.7780/kjrs.2009.25.2.133
  12. Jeong, J. and Kim, T. (2014), Analysis of dual-sensor stereo geometry and its positioning accuracy, Photogrammetric Engineering & Remote Sensing, Vol. 80, No. 7, pp. 653-662. https://doi.org/10.14358/PERS.80.7.653
  13. Jeong, J. and Kim, T. (2015), Comparison of positioning accuracy of a rigorous sensor model and two rational function models for weak stereo geometry, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 108, pp. 172-182. https://doi.org/10.1016/j.isprsjprs.2015.07.006
  14. Jeong, J. and Kim, T. (2016), Quantitative estimation and validation of the effects of the convergence, bisector elevation, and asymmetry angles on the positioning accuracies of satellite stereo pairs, Photogrammetric Engineering & Remote Sensing, Vol. 82, No. 8, pp. 625-633. https://doi.org/10.14358/PERS.82.8.625
  15. Jeong, J., Yang, C.-S., and Kim, T. (2015), Geo-positioning accuracy using multiple-satellite images: IKONOS, QuickBird, and KOMPSAT-2 stereo images, Remote Sensing, Vol. 7, No. 4, pp. 4549-4564. https://doi.org/10.3390/rs70404549
  16. Li, R., Zhou, F., Nui, X., and Di, K. (2007), Integration of Ikonos and QuickBird imagery for geopositioning accuracy analysis, Photogrammetric Engineering & Remote Sensing, Vol. 73, No. 9, pp. 1067-1074.
  17. Noguchi, M. Fraser, C.S. Nakamura, T. Shimono, T., and Oki, S. (2004), Accuracy assessment of QuickBird stereo imagery, The Photogrammetric Record, Vol. 19, No. 106, pp. 128-137. https://doi.org/10.1111/j.1477-9730.2004.00035.x

Cited by

  1. KOMPSAT-3 In/Cross-track 입체영상을 이용한 매칭 DEM 비교 분석 vol.34, pp.6, 2018, https://doi.org/10.7780/kjrs.2018.34.6.3.10
  2. Quality Assessment of Four DEMs Generated Using In-Track KOMPSAT-3 Stereo Images vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/2649809
  3. 수렴각에 따른 KOMPSAT-3·3A호 영상 간 정밀 상호좌표등록 결과 분석 vol.37, pp.6, 2016, https://doi.org/10.7848/ksgpc.2019.37.6.491
  4. 해외 테스트베드 지역 아리랑 위성 3호 DSM 성능평가 vol.36, pp.6, 2016, https://doi.org/10.7780/kjrs.2020.36.6.2.11
  5. KOMPSAT-3/3A 기준영상의 기하품질에 따른 상호좌표등록 결과 분석 vol.37, pp.2, 2016, https://doi.org/10.7780/kjrs.2021.37.2.4