DOI QR코드

DOI QR Code

Potential Swimming Motility Variation by AcrR in Escherichia coliS

  • Kim, Ye Jin (Interdisciplinary Program of EcoCreative of Graduate School) ;
  • Im, So Young (Interdisciplinary Program of EcoCreative of Graduate School) ;
  • Lee, Jae Ok (Interdisciplinary Program of EcoCreative of Graduate School) ;
  • Kim, Ok Bin (Interdisciplinary Program of EcoCreative of Graduate SchoolDepartment of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea)
  • Received : 2016.07.25
  • Accepted : 2016.08.02
  • Published : 2016.10.28

Abstract

AcrR, the toxic-compounds-response regulator, regulates motility in microorganisms, presumably to escape from toxic environments. In this study, the genome-wide target genes of AcrR were investigated in a ΔacrR mutant strain by microarray analysis. In the absence of AcrR, the transcription of most flagella/motility genes was highly increased. In addition, flagella formation was increased in this mutant strain. Motility assays revealed that AcrR modulates swimming motility, but not swarming.

Keywords

References

  1. Claret L, Hughes C. 2000. Functions of the subunits in the FlhD2C2 transcriptional master regulator of bacterial flagellum biogenesis and swarming. J. Mol. Biol. 303: 467-478. https://doi.org/10.1006/jmbi.2000.4149
  2. Girgis HS, Liu Y, Ryu WS, Tavazoie S. 2007. A comprehensive genetic characterization of bacterial motility. PLoS Genet. 3: e154. https://doi.org/10.1371/journal.pgen.0030154
  3. Gu R, Li M, Su C-C, Long F, Routh MD, Yang F, et al. 2008. Conformational change of the AcrR regulator reveals a possible mechanism of induction. Acta Crystallogr. F Struct. Biol. Commun. 64: 584-588. https://doi.org/10.1107/S1744309108016035
  4. Hirakawa H, Takumi-Kobayashi A, Theisen U, Hirata T, Nishino K, Yamaguchi A. 2008. AcrS/EnvR represses expression of the acrAB multidrug efflux genes in Escherichia coli. J. Bacteriol. 190: 6276-6279. https://doi.org/10.1128/JB.00190-08
  5. Inoue T, Shingaki R, Hirose S, Waki K, Mori H, Fukui K. 2007. Genome-wide screening of genes required for swarming motility in Escherichia coli K-12. J. Bacteriol. 189: 950-957. https://doi.org/10.1128/JB.01294-06
  6. Lee JO, Cho K-S, Kim OB. 2014. Overproduction of AcrR increases organic solvent tolerance mediated by modulation of SoxS regulon in Escherichia coli. Appl. Microbiol. Biotechnol. 98: 8763-8773. https://doi.org/10.1007/s00253-014-6024-9
  7. Lehti TA, Bauchart P, Dobrindt U, Korhonen TK, Westerlund-Wikström B. 2012. The fimbriae activator MatA switches off motility in Escherichia coli by repression of the flagellar master operon flhDC. Microbiology 158: 1444-1455. https://doi.org/10.1099/mic.0.056499-0
  8. Li M, Gu R, Su C-C, Routh MD, Harris KC, Jewell ES, et al. 2007. Crystal structure of the transcriptional regulator AcrR from Escherichia coli. J. Mol. Biol. 374: 591-603. https://doi.org/10.1016/j.jmb.2007.09.064
  9. Liu X, Matsumura P. 1994. The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J. Bacteriol. 176: 7345-7351. https://doi.org/10.1128/jb.176.23.7345-7351.1994
  10. Liu X, Matsumura P. 1995. An alternative sigma factor controls transcription of flagellar class-III operons in Escherichia coli: gene sequence, overproduction, purification and characterization. Gene 164: 81-84. https://doi.org/10.1016/0378-1119(95)00480-T
  11. Ma D, Alberti M, Lynch C, Nikaido H, Hearst JE. 1996. The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals. Mol. Microbiol. 19: 101-112. https://doi.org/10.1046/j.1365-2958.1996.357881.x
  12. McMurry LM, Levy SB. 2013. Amino acid residues involved in inactivation of the Escherichia coli multidrug resistance repressor MarR by salicylate, 2,4-dinitrophenol, and plumbagin. FEMS Microbiol. Lett. 349: 16-24.
  13. Misra R, Morrison KD, Cho HJ, Khuu T. 2015. Importance of real-time assays to distinguish multidrug efflux pump-inhibiting and outer membrane-destabilizing activities in Escherichia coli. J. Bacteriol. 197: 2479-2488. https://doi.org/10.1128/JB.02456-14
  14. Pesavento C, Hengge R. 2012. The global repressor FliZ antagonizes gene expression by σS-containing RNA polymerase due to overlapping DNA binding specificity. Nucleic Acids Res. 40: 4783-4793. https://doi.org/10.1093/nar/gks055
  15. Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Terán W, Watanabe K, Zhang X, et al. 2005. The TetR family of transcriptional repressors. Microbiol. Mol. Biol. Rev. 69: 326-356. https://doi.org/10.1128/MMBR.69.2.326-356.2005
  16. Rodionov DA, Gelfand MS, Mironov AA, Rakhmaninova AB. 2001. Comparative approach to analysis of regulation in complete genomes: multidrug resistance systems in gammaproteobacteria. J. Mol. Microbiol. Biotechnol. 3: 319-324.
  17. Ruiz C, Levy SB. 2013. Regulation of acrAB expression by cellular metabolites in Escherichia coli. J. Antimicrob. Chemother.
  18. Su C-C, Rutherford DJ, Edward WY. 2007. Characterization of the multidrug efflux regulator AcrR from Escherichia coli. Biochem. Biophys. Res. Commun. 361: 85-90. https://doi.org/10.1016/j.bbrc.2007.06.175

Cited by

  1. Local Repressor AcrR Regulates AcrAB Efflux Pump Required for Biofilm Formation and Virulence in Acinetobacter nosocomialis vol.8, pp.None, 2016, https://doi.org/10.3389/fcimb.2018.00270
  2. Temperature-Dependent Gene Expression in Yersinia ruckeri : Tracking Specific Genes by Bioluminescence During in Vivo Colonization vol.9, pp.None, 2016, https://doi.org/10.3389/fmicb.2018.01098
  3. Evaluation of Acquired Antibiotic Resistance in Escherichia coli Exposed to Long-Term Low-Shear Modeled Microgravity and Background Antibiotic Exposure vol.10, pp.1, 2016, https://doi.org/10.1128/mbio.02637-18
  4. Identification of functional butanol-tolerant genes from Escherichia coli mutants derived from error-prone PCR-based whole-genome shuffling vol.12, pp.None, 2016, https://doi.org/10.1186/s13068-019-1405-z
  5. A Novel Butanol Tolerance-Promoting Function of the Transcription Factor Rob in Escherichia coli vol.8, pp.None, 2020, https://doi.org/10.3389/fbioe.2020.524198