Acknowledgement
Supported by : National Natural Science Foundation of China, State Key Laboratory of Geohazard Prevention and Geoenvironment
References
- Architectural Institute of Japan (2006), "Commentary on Recommendations for Loads on Buildings-Chapter 5 snow loads", Tokyo, Japan.
- Bang, B., Nielsen, A. and Sundsbo, P.A. and Wiik, T. (1994), "Computer simulation of wind speed, wind pressure and snow accumulation around buildings (SNOW-SIM)", Energ. Buildings, 21(3), 235-243. https://doi.org/10.1016/0378-7788(94)90039-6
- Beyers, J.H.M., Sundsbo, P.A. and Harms, T.M. (2004), "Numerical simulation of three-dimensional transient snow drifting around a cube", J. Wind Eng. Ind. Aerod., 92, 725-747. https://doi.org/10.1016/j.jweia.2004.03.011
- Beyers, M. and Waechter, B. (2008), "Modeling transient snowdrift development around complex three dimensional structures", J. Wind Eng. Ind. Aerod., 96, 1603-1615. https://doi.org/10.1016/j.jweia.2008.02.032
- Brosh, T., Kalman, H. and Levy, A. (2011), "Dem simulation of particle attrition in dilute-phase pneumatic conveying", Granular Matter, 13(2), 175-181. https://doi.org/10.1007/s10035-010-0201-z
- China Meteorological Administration (2009) http://www.cma.gov.cn
- Crowe, C.T., Sommerfeld, M. and Tsuji, Y. (1998), Multiphase Flows With Droplets and Particles, CRC Press, Boca Raton, Florida, USA.
- Cundall, P.A. (1971), A Computer Model for Simulating Progressive, Large-Scale Movements in Block Rock Systems, Symposium of International Society of Rock Mechanics, Vol.1(ii-b), 11-8.
- Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
- Davenport, A.G. (1965), "The relationship of wind structure to wind loading", Proceedings of the Symposium on Wind Effect on Building and Structure, London, Britain.
- DEM Solutions (2015), "EDEM 2.2 User Guide".
- Emil, S. and Robert, H.S. (1986), Wind effects on structures: An introduction to wind engineering, 2nd Ed., Wiley-Interscience, New York, USA.
- Johnson, K.L. (1985), "Contact Mechanics", Cambridge Univ. Press, NY.
- Lu, Y., Huang, J. and Zheng, P. (2014), "Fluid hydrodynamic characteristics in supercritical water fluidized bed: a dem simulation study", Chem. Eng. Sci., 117(1), 283-292. https://doi.org/10.1016/j.ces.2014.06.032
- Majowiecki, M. (1998), "Snow and wind experimental analysis in the design of long-span sub-horizontal structures", J. Wind Eng. Ind. Aerod., 74-76,795-807. https://doi.org/10.1016/S0167-6105(98)00072-5
- Maldonado, E. and Roth, M.W. (2012), "Direct two-phase numerical simulation of snowdrifts external to building walls and remediation with deflection fins", J. Appl. Fluid Mech., 5(3), 71-78.
- Mindlin, R.D. (1949), "Compliance of elastic bodies in contact", J. Appl. Mech. - T ASME, 16, 259-268.
- Moore, I. (1995), "Numerical modeling of blowing snow around buildings", Ph.D. Dissertation, University of Leeds, Leeds.
- Murakami, S. (2000), "Computational environment design for indoor and outdoor climates", University of Tokyo Press, Tokyo, Japan.
- Машгиз (1967), "Снегоогчститель", Mоскве, Россия.
- Scapozza, C. and Bartelt, P. (2003), "Triaxial tests on snow at low strain rate. Part II. Constitutive behavior", J. Glaciology , 49(164), 91-101. https://doi.org/10.3189/172756503781830890
- Sundsbo, P.A. (1998), "Numerical simulations of wind deflection fins to control snow accumulation in building steps", J. Wind Eng. Ind. Aerod., 74-76, 543-552. https://doi.org/10.1016/S0167-6105(98)00049-X
- Thiis, T.K. (2000), "A comparison of numerical simulations and full-scale measurements of snowdrifts around buildings", Wind Struct., 3(2), 73-81. https://doi.org/10.12989/was.2000.3.2.073
- Thiis, T.K. (2003), "Large scale studies of development of snowdrifts around buildings", J. Wind Eng. Ind. Aerod., 91(6), 829-839. https://doi.org/10.1016/S0167-6105(02)00474-9
- Tominaga, Y. and Mochida, A. (1999), "CFD prediction of flowfield and snowdrift around a building complex in a snowy region", J. Wind Eng. Ind. Aerod., 81, 273-282. https://doi.org/10.1016/S0167-6105(99)00023-9
- Tominaga, Y., Mochida, A. and Yoshino, H. et al. (2006), "CFD prediction of snowdrift around a cubic building model", Proceedings of the 4th International Symposium on Computational Wind Engineering, Yokohama, Japan, December.
- Tominaga, Y., Okaze, T. and Mochida, A. (2011), "CFD modeling of snowdrift around a building: An overview of models and evaluation of a new approach", Build. Environ., 46, 899-910. https://doi.org/10.1016/j.buildenv.2010.10.020
- Tsuchiya, M., Tomabechi, T., Hongo, T. and Ueda, H. (2002), "Wind effects on snowdrift on stepped flat roofs", J. Wind Eng. Ind. Aerod., 90(12-15), 1881-1892. https://doi.org/10.1016/S0167-6105(02)00295-7
- Uematsu, T., Nakata, T., Takeuchi, K. and Arisawa, Y. and Kaneda, Y. (1991), "Three-dimensional numerical simulation of snowdrift", Cold Regions Sci. Technol., 20(1), 65-73. https://doi.org/10.1016/0165-232X(91)90057-N
- Wang, W.H., Liao, H.L. and Li, M.S. (2014), "Wind tunnel test on wind-induced roof snow distribution", J. Build. Struct., 35(5), 135-141. (in Chinese)
- Yamagishi, Y., Kimura, S., Ishizawa, K., Kikuchi, M., Morikawa, H. and Kojima, T. (2012), "Visualization of snowdrift around buildings of an Antarctic base through numerical simulation", J. Visualization, 15(1), 78-84.
- Zhang, Y., Li, Y., Yang, J. and Liu, D. (2011), "Statistical particle stress in aeolian sand movement-derivation and validation", Powder Technol., 209(1), 147-151. https://doi.org/10.1016/j.powtec.2011.01.019
- Zhao, T., Houlsby, G.T. and Utili, S. (2014), "Investigation of submerged debris flows via CFD-DEM coupling", Int. Symp. on geomechanics from Micro to Macro, Is Cambridge.
- Zhou, X.Y., Liu, C.Q., Gu, M. and Tan, M.H. (2015), "Application of Lagrangian method to snowdrift model", J. Eng. Mech. - ASCE, 32(1), 36-42. (in Chinese)
Cited by
- Adaptive-mesh method using RBF interpolation: A time-marching analysis of steady snow drifting on stepped flat roofs vol.171, 2017, https://doi.org/10.1016/j.jweia.2017.09.008
- Effect of bogie fairings on the snow reduction of a high-speed train bogie under crosswinds using a discrete phase method vol.27, pp.4, 2018, https://doi.org/10.12989/was.2018.27.4.255
- Wind tunnel tests and CFD simulations for snow redistribution on 3D stepped flat roofs vol.28, pp.1, 2019, https://doi.org/10.12989/was.2019.28.1.031
- INVESTIGATION OF REPRODUCTION OF SNOW DISTRIBUTION ON A TWO-LEVEL FLAT-ROOF BUILDING : Prediction of unbalanced snow distribution due to wind on roofs using CFD vol.84, pp.762, 2016, https://doi.org/10.3130/aijs.84.1055
- Wind Tunnel Tests and Numerical Simulations of Wind-Induced Snow Drift in an Open Stadium and Gymnasium vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/8840759
- Wind-sand coupling movement induced by strong typhoon and its influences on aerodynamic force distribution of the wind turbine vol.30, pp.4, 2016, https://doi.org/10.12989/was.2020.30.4.433
- CFD simulations can be adequate for the evaluation of snow effects on structures vol.13, pp.4, 2016, https://doi.org/10.1007/s12273-020-0643-0
- Wind Tunnel Test of Wind Load on a Typical Cross Line High-Speed Railway Station vol.25, pp.10, 2016, https://doi.org/10.1007/s12205-021-0702-9