Acknowledgement
Supported by : NSFC, CPSF
References
- D. Bargmann, M. Bonk, A. Hinkkanen, and G. J. Martin, Families of meromorphic functions avoiding continuous functions, J. Anal. Math. 79 (1999), 379-387. https://doi.org/10.1007/BF02788248
- W. Bergweiler and W. Eremenko, On the singularities of the inverse to a mermorphic function of finite order, Rev. Mat. Iberoam 11 (1995), no. 2, 335-373.
- A. Bloch, Sur les systemes de fonctions holomorphes a varietes lineaires lacunaires, Ann. Sci. Ecole Norm. Sup. 43 (1926), no. 3, 309-362. https://doi.org/10.24033/asens.772
- H. H. Chen ad M. L. Fang, On value distribution of fnf′, Sci. China Ser. A 38 (1995), 789-798.
- Q. Chen, S. Nevo, and X. C. Pang, A general differential inequality of the k-th derivative that leads to normality, Ann. Acad. Sci. Fenn. Math. 38 (2013), no. 2, 691-695. https://doi.org/10.5186/aasfm.2013.3833
- D. Drasin, Normal families and the Nevanlinna theory, Acta Math. 122 (1969), 231-263. https://doi.org/10.1007/BF02392012
- M. Erwin, Uberein Problem Von Hayman, Math. Z. 8 (1979), no. 1, 239-259.
- H. Fujimoto, Extensions of the big Picard's theorem, Tohoku Math J. 24 (1972), 415-422. https://doi.org/10.2748/tmj/1178241480
- J. Grahl and S. Nevo, Spherical derivatives and normal families, J. Anal. Math. 117 (2012), 119-128. https://doi.org/10.1007/s11854-012-0016-4
- J. Grahl and S. Nevo, An extension of one direction in Marty's normality criterion, Monatsh. Math. 174 (2014), no. 2, 205-217. https://doi.org/10.1007/s00605-013-0561-7
- M. Green, Holomorphic maps into complex projective space omitting hyperplanes, Trans. Amer. Math. Soc. 169 (1972), 89-103. https://doi.org/10.1090/S0002-9947-1972-0308433-6
- Y. X. Gu, On normal families of meromorphic functions, Sci. China Ser. A (1978), no. 4, 373-384.
- W. K. Hayman, Research Problems in Function Theory, London: Athlone Press, 1967.
- Z. Hu, Extended Ces'aro operators on mixed norm spaces, Proc. Amer. Math. Soc. 131 (2003), no. 7, 2171-2179. https://doi.org/10.1090/S0002-9939-02-06777-1
- L. Jin, Theorem of Picard type for entire functions of several complex variables, Kodai Math. J. 26 (2003), no. 2, 221-229. https://doi.org/10.2996/kmj/1061901063
- S. Y. Li, The normality criterion of a class of meromorphic functions, J. Fujian Norm. Univ. 2 (1984), 156-158.
- S. Y. Li and C. H. Xie, On normal families of meromorphic functions, Acta Math. Sin. 4 (1986), 468-476.
-
B. Li and C. Ouyang, Higher radial derivative of functions of
$Q_p$ spaces and its applications, J. Math. Anal. Appl. 327 (2007), no. 2, 1257-1272. https://doi.org/10.1016/j.jmaa.2006.04.088 - X. J. Liu, S. Nevo, and X. C. Pang, Differential inequalities, normality and quasi-normality, Acta Math. Sin. (Engl. Ser.) 30 (2014), no. 2, 277-282. https://doi.org/10.1007/s10114-014-2542-8
- F. Lu, Theorems of Picard type for meromorphic function of several complex variables, Complex Var. Elliptic Equ. 58 (2013), no. 8, 1085-1092. https://doi.org/10.1080/17476933.2011.627440
- F. Marty, Recherches sur la repartition des valeurs dune fonction meromorphe, Ann. Fac. Sci. Univ. Toulouse Sci. Math. Sci. Phys. (3) 23 (1931), 183-261.
- C. Miranda, Sur un nouveau critere de normalite pour les familles des fonctions holomorphes, Bull. Sci. Math. France 63 (1935), 185-196.
- P. Montel, Lecons sur les families normales de fonctions analytiques et leur applicaeions, Coll. Borel, 1927.
- E. Nochka, On the theory of meromorphic functions, Soviet Math. Dokl. 27 (1983), 377-381.
- I. Oshkin, A normal criterion of families of holomorphic functions, (Russian) Usp. Mat. Nauk. 37 (1982), no. 2, 221-222.
- X. C. Pang, Bloch's principle and normal criterion, Sci. China Ser. A 32 (1989), no. 7, 782-791.
- X. C. Pang, On normal criterion of meromorphic functions, Sci. China Ser. A 33 (1990), no. 5, 521-527.
- H. L. Royden, A criterion for the normality of a family of meromorphic functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 499-500.
-
W. Rudin, Function Theory in the Unit Ball of
$\mathbb{C}^n$ , Springer-Verlag, New York-Berlin, 1980. - J. Schiff, Normal Families, Springer, New York, 1993.
-
Z. H. Tu, Normality criteria for families of holomorphic mappings of several complex variables into
$P^n(\mathbb{C})$ , Proc. Amer. Math. Soc. 127 (1999), no. 4, 1039-1049. https://doi.org/10.1090/S0002-9939-99-04610-9 -
Z. H. Tu and S. S. Zhang, Normal families of holomorphic mappings of several complex variables into
$\mathbb{L}^1(\mathbb{C})$ , Acta. Math. Sin. (Chin. Ser.) 53 (2010), no. 6, 1045-1050. - L. Yang and G. H. Zhang, Recherches sur la normalite des familiesn de fonctions analytiques ades valeurs multiples. I. Un nouveau critere at quelques applications, Sci. Sinica 14 (1965), 1258-1271
- L. Yang and G. H. Zhang, Recherches sur la normalite des familiesn de fonctions analytiques ades valeurs multiples. II. Generalisations, Sci. Sinica 15 (1996), 433-453.
- Y. S. Ye, A new normal criterion and its application, Chin. Ann. Math. Ser. A(Supplement) 12 (1991), 44-49.
- L. Zalcman, A heuristic principle in complex function theory, Amer. Math. Monthly 82 (1975), no. 8, 813-817. https://doi.org/10.2307/2319796
- L. Zalcman, On some quesitions of Hayman, unpublished manuscript, 5 pp., 1994.
- K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate Text in Mathematics 226, Springer, New York, 2005.