References
- P. N. Brown and Y. Saad, Convergence theory of nonlinear Newton-Krylov algorithms, SIAM J. Optim. 4 (1994), no. 2, 297-330. https://doi.org/10.1137/0804017
- R. H. Byrd and J. Nocedal, A tool for the analysis of quasi-Newton methods with application to unconstrained minimization, SIAM J. Numer. Anal. 26 (1989), no. 3, 727-739. https://doi.org/10.1137/0726042
- Y. H. Dai, Convergence properties of the BFGS algorithm, SIAM J. Optim. 13 (2002), no. 3, 693-701. https://doi.org/10.1137/S1052623401383455
- E. D. Dolan and J. J. More, Benchmarking optimization software with performance profiles, Math. Program. 91 (2002), no. 2, 201-213. https://doi.org/10.1007/s101070100263
- R. Fletcher, A new variational result for quasi-Newton formulae, SIAM J. Optim. 1 (1991), no. 1, 18-21. https://doi.org/10.1137/0801002
- R. Fletcher, Practical Methods of Optimization, 2nd ed., John Wiley & Sons, 2013.
- A. Griewank, The "global" convergence of Broyden-like methods with a suitable line search, J. Aust. Math. Soc. Ser. B 28 (1986), no. 1, 75-92. https://doi.org/10.1017/S0334270000005208
- G. Z. Gu, D. H. Li, L. Qi, et al., Descent directions of quasi-Newton methods for symmetric nonlinear equations, SIAM J. Numer. Anal. 40 (2002), no. 5, 1763-1774. https://doi.org/10.1137/S0036142901397423
- D. H. Li and W. Y. Cheng, Recent progress in the global convergence of quasi-Newton methods for nonlinear equations, Hokkaido Math. J. 36 (2007), no. 4, 729-743. https://doi.org/10.14492/hokmj/1272848030
- D. H. Li and M. Fukushima, A globally and superlinearly convergent Gauss-Newton-based BFGS method for symmetric nonlinear equations, SIAM J. Numer. Anal. 37 (1999), no. 1, 152-172. https://doi.org/10.1137/S0036142998335704
- D. H. Li and X. L. Wang, A modified Fletcher-Reeves-type derivative-free method for symmetric nonlinear equations, Numer. Algebra Control Optim. 1 (2011), no. 1, 71-82. https://doi.org/10.3934/naco.2011.1.71
- J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, SIAM, Academic Press, 1970.
- S. Schlenkrich, A. Griewank, and A. Walther, On the local convergence of adjoint Broyden methods, Math. Program. 121 (2010), no. 2, 221-247. https://doi.org/10.1007/s10107-008-0232-y
- S. Schlenkrich and A. Walther, Global convergence of quasi-Newton methods based on adjoint Broyden updates, Appl. Numer. Math. 59 (2009), no. 5, 1120-1136. https://doi.org/10.1016/j.apnum.2008.05.007
- E. Yamakawa and M. Fukushima, Testing parallel variable transformation, Comput. Optim. Appl. 13 (1999), no. 1-3, 253-274. https://doi.org/10.1023/A:1008629511432
- G. L. Yuan and S. W. Yao, A BFGS algorithm for solving symmetric nonlinear equations, Optimization. 62 (2013), no. 1, 85-99. https://doi.org/10.1080/02331934.2011.564621
- L. Zhang, W. J. Zhou, and D. H. Li, Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search, Numer. Math. 104 (2006), no. 4, 561-572. https://doi.org/10.1007/s00211-006-0028-z
- W. J. Zhou and D. M. Shen, An inexact PRP conjugate gradient method for symmetric nonlinear equations, Numer. Funct. Anal. Optim. 35 (2014), no. 3, 370-388. https://doi.org/10.1080/01630563.2013.871290