DOI QR코드

DOI QR Code

Determination of Optimal Concentration of LPE (Lysophosphatidylethanolamine) for Postharvest Stability and Quality of Strawberry Fruit

딸기 수확 후 저장기간 연장 및 품질 개선을 위한 LPE (Lysophosphatidylethanolamine) 적정 처리농도 구명

  • Choi, Ki-Young (Department of Controlled Agriculture, Kangwon National University) ;
  • Kim, Il-Seop (Department of Horticulture, Kangwon National University) ;
  • Yun, Young-Sik (Department of Agricultural Sciences, Korea National Open University) ;
  • Choi, Eun-Young (Department of Agricultural Sciences, Korea National Open University)
  • 최기영 (강원대학교 시설농업학과) ;
  • 김일섭 (강원대학교 원예학과) ;
  • 윤영식 (한국방송통신대학교 농학과) ;
  • 최은영 (한국방송통신대학교 농학과)
  • Received : 2016.07.28
  • Accepted : 2016.09.08
  • Published : 2016.09.30

Abstract

This study aims to determine the optimal maturity of strawberry fruits as affected by the application of lysophosphatidylethanolamine (LPE) and its optimal concentration for postharvest stability and quality. Prior to application of treatments, fruits that were classified into levels of maturity (0%, 50%, 70% and 100%) were air-dried for 40 minutes and stored in the refrigerator at $4^{\circ}C$ for 12 days. Fruits at 70% maturity were dipped into 0, 10, 50 and $100mg{\cdot}L^{-1}$ LPE solutions for 1 minute. A lower range of concentration (0, 2.5, 5, 10 and $25mg{\cdot}L^{-1}$) was applied to fruits at different maturity levels. Data on fresh weight, hardness at vertical and horizontal loading positions, color index and sugar content during storage were collected. Based on fruits with 70% maturity dipped in LPE concentrations, there were no significant differences found on fresh weight, color index and sugar content. However, the application of $10mg{\cdot}L^{-1}$ LPE gave the highest hardness at vertical loading position while $100mg{\cdot}L^{-1}$ had the lowest average. At lower range of LPE concentrations, fresh weight was not significantly affected by LPE application and maturity levels. Hardness of fruits was mainly based on the maturity of the fruits. Increased hardness was observed in the fruits with 70% maturity dipped into the $5mg{\cdot}L^{-1}$ of LPE solution. The hardness and Hunter's $L^*$ and $b^*$ value of 100% matured fruits gave lowest values despite the application of $25mg{\cdot}L^{-1}$ LPE 12 days after storage.

본 연구는 딸기 '매향' 품종의 과실을 수확 한 후 LPE 용액에 침지처리 한 뒤 저장기간 동안 당도, 색도, 경도 및 생체중 변화를 조사하여 적정 LPE 처리 농도 및 적정 숙도를 구명하고자 실시하였다. 숙도 70%인 과실을 LPE 0(증류수, 대조구), 10, 50, $100mg{\cdot}L^{-1}$ 농도에 1분간 침지하거나, 딸기 꼭지에서부터 익은 비율로 숙도 0%, 50%, 70%, 100%로 등급화한 후에 LPE 0(증류수, 대조구), 2.5, 5, 10, $25mg{\cdot}L^{-1}$ 농도에 1분간 침지한 후 실온($20^{\circ}C{\pm}1$)에서 40분간 자연건조 한 뒤 $4^{\circ}C$ 저장고에 12일간 저장하였다. 저장 기간 동안 생체중, 종경도, 횡경도, 색도 및 당도 변화를 조사하였다. 숙도 70% 과실을 수확 후 LPE 0, 10, 50, $100mg{\cdot}L^{-1}$ 농도에 침지 후 저장하며 과실의 생체중을 측정하였을 때 처리 농도별 유의차가 없었다. 종경도는 저장 3일째에는 무처리구와 LPE $10mg{\cdot}L^{-1}$ 처리구에서 가장 높았다. 저장 6일째부터 12일까지는 $10mg{\cdot}L^{-1}$ 처리구에서 가장 높았다. 횡경도는 저장 9일째 10과 $50mg{\cdot}L^{-1}$에서 가장 높게 측정되었으나 12일째에는 $10mg{\cdot}L^{-1}$ 처리구는 무처리구와 차이가 없었고 50과 $100mg{\cdot}L^{-1}$에서 가장 낮았다. 색차계 $L^*$$b^*$ 값은 LPE 처리 농도별 저장 기간 별유의차가 없었고, $a^*$ 값은 저장 12일째에 LPE $10mg{\cdot}L^{-1}$ 처리를 포함한 모든 농도에서 무처리구에 비하여 높았다. 숙도 0%, 50%, 70%, 100%로 등급화한 후에 LPE 0(증류수, 대조구), 2.5, 5, 10, $25mg{\cdot}L^{-1}$ 농도에 침지한 후 저장하였을 때 과실 생체중은 LPE 처리농도별 유의차가 없었다. 종경도와 횡경도는 LPE 처리농도와 상관없이 숙도 0% >50%> 70%> 100% 순으로 높았다. LPE 농도 처리에 의한 영향은 종경도는 숙도 70% 과실의 경우 저장 3, 6, 12일째 모두 LPE $5mg{\cdot}L^{-1}$에서 가장 높았고 12일째는 LPE 처리구 모두 무처리구에 비해 높았다. 숙도 100% 과실의 경우 저장 12일째에 LPE $10mg{\cdot}L^{-1}$에서 종경도가 무처리구에 비해 높았지만 $25mg{\cdot}L^{-1}$에서는 종경도 및 횡경도 모두 가장 낮았다. 색차계 L, b 값은 LPE 처리와 관계없이 숙도 0% > 50% > 70% > 100% 순으로 높아 숙도에 따라 유의차가 있었다. 숙도100%에서 가장 낮은 $L^*$$b^*$값이 측정되었다. 숙도 50%와 70% 과실의 경우 저장기간 중 다른 처리구에 비해 $5mg{\cdot}L^{-1}$에서 $L^*$, $b^*$ 값이 가장 높았다. 숙도 100%의 경우 $25mg{\cdot}L^{-1}$에서는 가장 낮은 값을 보여 과숙이 유발된 것으로 판단된다. 색차계 $a^*$ 값은 $L^*$$b^*$와는 반대로 그 값의 증가는 숙도가 높음을 의미하는 것으로 숙도 0, 50, 70, 100% 모두에서 LPE 처리 효과를 구분할 수 없었고, 당도는 처리별, 기간별 유의차가 없었다. 결론적으로, LPE는 저장 중인 딸기 과실의 생체중에 영향을 주지 않으면서 경도 및 색도 변화에는 영향을 주는 것을 알 수 있다. 숙도 70% 과실은 타 숙도에 비해 저장성 증대효과가 크며, 숙도 70%일때 처리농도 LPE $5mg{\cdot}L^{-1}$에서 저장성 증대에 효과적 이였다.

Keywords

References

  1. Ahmed, Z.F.R. and J.P. Palta. 2010. Lysophosphatidylethanolamine, a natural phospholipid, may retard senescence and improve the shelf life of banana fruit. HortSci. 45:66 (Abstr.).
  2. Ahmed, Z.F.R. and J.P. Palta, 2011. A natural lipid, lysophosphatidylethanolamine, may promote ripening while reducing senescence in banana fruit. HortSci. 46:273 (Abstr.).
  3. Alferez, F., Y. Lluch, and J.K. Burns. 2008. Phospholipase A2 and postharvest peel pitting in citrus fruit. Postharvest Biol. Technol. 49:69-76. https://doi.org/10.1016/j.postharvbio.2008.01.010
  4. Amaro, A.L., J. Fundo, J.C. Beaulieu, R.E. Stein, J.P. Fernandez-Trujillo, and D.P.F. Almeida. 2012. Lysophosphatidylethanolamine effects upon volatiles and quality of fresh-cut cantaloupe melon. Acta Hort. 934:959-965.
  5. Amaro, A.L. and D.P.F. Almeid. 2013, Lysophosphatidylethanolamine effects on horticultural commodities: A review. Postharvest Biol. Technol. 78:92-102. https://doi.org/10.1016/j.postharvbio.2012.12.011
  6. Azzini, E., P. Vitaglione, F. Intorre, A. Napolitano, A. Durazzo, M.S. Foddai, A. Fumagalli, G. Catasta, L. Rossi, E. Venneria, A. Raguzzini, L. Palomba, V. Fogliano, and G. Maiani. 2010. Bioavailability of strawberry antioxidants in human subjects. Br. J. Nutr. 104:1165-1173 https://doi.org/10.1017/S000711451000187X
  7. Bower, J.H., W.V. Biasi, and E.J. Mitcham. 2013. Effects of ethylene and 1-MCP on the quality and storage life of strawberries. Postharvest Biol. Technol. 28:417-423.
  8. Cowan, A.K. 2009. Plant growth promotion by 18:0-lysophosphatidylethanolamine involves senescence delay. Plant Signal. Behav. 4:324-327. https://doi.org/10.4161/psb.4.4.8188
  9. Farag, K.M. and J.P. Palta. 1991. Enhancing ripening and keeping quality of apple and cranberry fruits using lysophosphatidylethanolamine, a natural lipid. HortSci. 26:67 (Abstr.).
  10. Farag, K. and J.P. Palta. 1993a. Use of lysophoshatidylethanolamine, a natural lipid, to retard tomato leaf and fruit senescence. Physiol. Plant. 87: 515-521. https://doi.org/10.1111/j.1399-3054.1993.tb02501.x
  11. Farag, K.M. and J.P. Palta. 1993b. Use of natural lipids to accelerate ripening and enhance storage life of tomato fruit with and without ethephon. HortTech. 3:62-65.
  12. Garcia, J.M., C. Aguilera, and M.J. Antonia. 1996. Gray mold in and quality of strawberry fruit following postharvest heat treatment. HortSci. 31:255-257.
  13. Hong, J.H., J.R. Altwies, M. Guelzow, and J.P. Palta. 2002. The influence of lysophosphatidylethanolamine, a natural lipid, ethylene production and ACC oxidase activity on mature green vs. red tomatoes. In: XXVI International Horticultural Congress, Toronto, Canada, p.262 (Abstr.).
  14. Hong, J.H. 2006. Lysophosphatidylethanolamine enhances ripening and prolongs shelf life in tomato fruit: contrasting effect on mature green vs red tomatoes. Hortic. Environ. Biotechnol. 47:55-58.
  15. Jouki, M. and N. Khazaei. 2014. Effect of low-dose gamma radiation and active equilibrium modified atmosphere packaging on shelf life extension of fresh strawberry fruits. Food Packaging Shelf Life.I:49-55. https://doi.org/10.1016/j.fpsl.2013.12.001
  16. Kaur, N. and J.P. Palta. 1997. Postharvest dip in a natural lipid, lysophosphatidylethanolamine, may prolong vase life of Snapdragon flowers. HortSci. 32:888-890.
  17. Korea Agro-Fisheries & Food Trade Corp. (aT). 2015. Import & export statistics.
  18. Kim, T.I., W.S. Jang, J.H. Choi, M.H. Nam, W.S. Kim, and S. S. Lee. 2014. Breeding of Strawberry 'Maehyang' for Forcing Culture. Korean J. Hort. Sci. Tech. 22:434-437.
  19. Kim, H.M. and S.J. Hwang. 2013. Qualitative Changes in Maturity, Precooling Temperatures and Light illumination on the postharvest management of the fruits in 'Maehyang' strawberry for export. Protected Hort. Plant Fac. 22:432-438. https://doi.org/10.12791/KSBEC.2013.22.4.432
  20. Kim S.K., R.N. Bae, H. Na, K.D. Ko, and C. Chun. 2013. Changes in physicochemical characteristics during fruit development in June-bearing strawberry cultivars. Hortic. Environ. Biotechnol. 54: 44-51. https://doi.org/10.1007/s13580-013-0166-z
  21. Magdy Abd-Elhady. 2014. Effect of citric acid, calcium lactate and low temperature prefreezing treatment on the quality of frozen strawberry. Ann. Agric. Sci. 59:69-75.
  22. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2015. Status of vegetable production statistics.
  23. Ozgen, M., S. Ozgen, and J.P. Palta. 1999. Use of lysophosphatidylethanolamine(LPE), a natural lipid, to accelerate ripening and enhance self life of cranberry fruit. HortSci. 34:538.
  24. Roger, H., F.H.J. Elgar, C.B. Watkins, P.J. Jackson, and I.C. Hallett. 2000. Physical and mechanical changes in strawberry fruit after high carbondioxide treatments. Postharvest Biol. Technol. 19:139-146. https://doi.org/10.1016/S0925-5214(00)00090-9
  25. Shafiee, M., T.S. Taghavi, and M. Babalar. 2010. Addition of salicylic acid to nutrient solution combined with postharvest treatments(hot water, salicylic acid, and calcium dipping) improved postharvest fruit quality of strawberry. Sci. Hortic. 124:40-45. https://doi.org/10.1016/j.scienta.2009.12.004
  26. Sotirhos, N., B. Herslof, and L. Kenne. 1986. Quantitative analysis of phospholipids by 31P-NMR. J. Lipid Res. 27:386-392.
  27. Zheng, Y., S.Y. Wang, C.Y. Wang, and W. Zheng. 2007. Changes in strawberry phenolics, anthocyanins, and antioxidant capacity in response to high oxygen treatments. LWT - Food Sci. Tech. 40:49-57. https://doi.org/10.1016/j.lwt.2005.08.013
  28. Vicente, AR., G.A. Martinez, P.M. Civello, and A.R. Chaves. 2002. Quality of heat-treated strawberry fruit during refrigerated storage. Postharvest Biol. Technol. 25:59-71. https://doi.org/10.1016/S0925-5214(01)00142-9