Acknowledgement
Supported by : National Science Foundation of China
References
- Atlayan, O. and Charney, F.A. (2014), "Hybrid buckling-restrained braced frames", J. Constr. Steel. Res., 96, 95-105. https://doi.org/10.1016/j.jcsr.2014.01.001
- Calado, L., Proenca, J.M., Espinha, M. and Castiglioni, C.A. (2013), "Hysteretic behavior of dissipative welded fuses for earthquake resistant composite steel and concrete frames", Steel. Compos. Struct., Int. J., 14(6), 547-569. https://doi.org/10.12989/scs.2013.14.6.547
- Charney, F.A. and Atlayan, O. (2011), "Hybrid moment-resisting steel frames", Eng. J., 48(3), 169-182.
- Chopra, A.K. and Goel, R.K. (2002), "A modal pushover analysis procedure for estimating seismic demands for buildings", Earthq. Eng. Struct. Dyn., 31(3), 561-582. https://doi.org/10.1002/eqe.144
- Cimellaro, G.P., Reinhorn, A.M. and Bruneau, M. (2010), "Framework for analytical quantification of disaster resilience", Eng. Struct., 32(11), 3639-3649. https://doi.org/10.1016/j.engstruct.2010.08.008
- Connor, J.J., Wada, A., Iwata, M. and Huang, Y.H. (1997), "Damage-controlled structures .1. Preliminary design methodology for seismically active regions", J. Struct. Eng., 123(4), 423-431. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:4(423)
- De Matteis, G., Landolfo, R. and Mazzolani, F.M. (2003), "Seismic response of MR steel frames with lowyield steel shear panels", Eng. Struct., 25(2), 155-168. https://doi.org/10.1016/S0141-0296(02)00124-4
- Dougka, G., Dimakogianni, D. and Vayas, I. (2014a), "Innovative energy dissipation systems (FUSEIS 1-1) - Experimental analysis", J. Constr. Steel. Res., 96, 69-80. https://doi.org/10.1016/j.jcsr.2014.01.003
- Dougka, G, Dimakogianni, D. and Vayas, I. (2014b), "Seismic behavior of frames with innovative energy dissipation systems (FUSEIS 1-1)", Earthq. Struct., 6(5), 561-580. https://doi.org/10.12989/eas.2014.6.5.561
- Erochko, J., Christopoulos, C., Tremblay, R. and Choi, H. (2011), "Residual drift response of SMRFs and BRB frames in steel buildings designed according to ASCE 7-05", J. Struct. Eng., 137(5), 589-599. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000296
- Fang, C., Yam, M.C.H., Lam, A.C.C. and Xie, L.K. (2014), "Cyclic performance of extended end-plate connections equipped with shape memory alloy bolts", J. Constr. Steel. Res., 94, 122-136. https://doi.org/10.1016/j.jcsr.2013.11.008
- Farrow, K.T. and Kurama, Y.C. (2003), "SDOF demand index relationships for performance-based seismic design", Earthq. Spectra., 19(4), 799-838. https://doi.org/10.1193/1.1622955
- Gupta, A. and Krawinkler, H. (2000), "Dynamic P-delta effects for flexible inelastic steel structures", J Struct. Eng., 126(1), 145-154. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:1(145)
- Hatzigeorgiou, G.D. (2010), "Ductility demand spectra for multiple near- and far-fault earthquakes", Soil. Dyn. Earthq. Eng., 30(4), 170-183. https://doi.org/10.1016/j.soildyn.2009.10.003
- Hitaka, T. and Matsui, C. (2003), "Experimental study on steel shear wall with slits", J. Struct. Eng., 129(5), 586-595. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:5(586)
- Housner, G.W. (1956), "Limit design of structures to resist earthquakes", Proceedings of the First World Conference on Earthquake Engineering, Berkeley, CA, USA, June.
- Jiang, Y., Li, G. and Yang, D. (2010), "A modified approach of energy balance concept based multimode pushover analysis to estimate seismic demands for buildings", Eng. Struct., 32(5), 1272-1283. https://doi.org/10.1016/j.engstruct.2010.01.003
- Ke, K. and Chen, Y.Y. (2014), "Energy-based damage-control design of steel frames with steel slit walls", Struct. Eng. Mech., Int. J., 52(6), 1157-1176. https://doi.org/10.12989/sem.2014.52.6.1157
- Ke, K. and Chen, Y.Y. (2016), "Seismic performance of MRFs with high strength steel main frames and EDBs", J. Constr. Steel. Res., 126, 214-228. https://doi.org/10.1016/j.jcsr.2016.07.003
- Ke, K., Ke, S. and Chuan, G. (2015), "The energy factor of systems considering multiple yielding stages during ground motions", Soil. Dyn. Earthq. Eng., 71, 42-48. https://doi.org/10.1016/j.soildyn.2014.12.008
- Kharmale, S.B. and Ghosh, S. (2013), "Performance-based plastic design of steel plate shear walls", J. Constr. Steel. Res., 90, 85-97. https://doi.org/10.1016/j.jcsr.2013.07.029
- Kheyroddin, A., Khalili, A., Emami, E. and Sharbatdar, M.K. (2016), "An innovative experimental method to upgrade performance of external weak RC joints using fused steel prop plus sheets", Steel Compos. Struct., Int. J., 21(2), 443-460. https://doi.org/10.12989/scs.2016.21.2.443
- Lee, L.H., Han, S.W. and Oh, Y.H. (1999), "Determination of ductility factor considering different hysteretic models", Earthq. Eng. Struct. Dyn., 28(9), 957-977. https://doi.org/10.1002/(SICI)1096-9845(199909)28:9<957::AID-EQE849>3.0.CO;2-K
- Leelataviwat, S., Goel, S.C. and Stojadinovic, B. (2002), "Energy-based seismic design of structures using yield mechanism and target drift", J. Struct. Eng., 128(8), 1046-1054. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:8(1046)
- Leelataviwat, S., Saewon, W. and Goel, S.C. (2009), "Application of energy balance concept in seismic evaluation of structures", J. Struct. Eng., 135(2), 113-121. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:2(113)
- Li, G. and Fahnestock, L. (2012), "Seismic response of single-degree-of-freedom systems representing lowductility steel concentrically braced frames with reserve capacity", J. Struct. Eng., 139(2), 199-211.
- MacRae, G.A. and Kawashima, K. (1997), "Post-earthquake residual displacements of bilinear oscillators", Earthq. Eng. Struct. Dyn., 26(7), 701-716. https://doi.org/10.1002/(SICI)1096-9845(199707)26:7<701::AID-EQE671>3.0.CO;2-I
- Mohammadi-Gh, M. and Akrami, V. (2010) "Application of Frictional Sliding Fuse in Infilled Frames, Fuse Adjustment and Influencing Parameters", Struct. Eng. Mech., Int. J., 36(6), 715-727. https://doi.org/10.12989/sem.2010.36.6.715
- Moradipour, P., Chan, T.H.T. and Gallage, C. (2015), "An improved modal strain energy method for structural damage detection, 2D simulation", Struct. Eng. Mech., Int. J., 54(1), 105-119. https://doi.org/10.12989/sem.2015.54.1.105
- Nakashima, M., Saburi, K. and Tsuji, B. (1996), "Energy input and dissipation behaviour of structures with hysteretic dampers", Earthq. Eng. Struct. Dyn., 25(5), 483-496. https://doi.org/10.1002/(SICI)1096-9845(199605)25:5<483::AID-EQE564>3.0.CO;2-K
- Newmark, N.M. and Hall, W.J. (1982), Earthquake Spectra and Design, Earthquake Engineering Research Institute, Berkeley, CA, USA.
- Park, J.H. (2013), "Seismic response of SDOF systems representing masonry-infilled RC frames with damping systems", Eng. Struct., 56, 1735-1750.
- Pekcan, G., Itani, A.M. and Linke, C. (2014), "Enhancing seismic resilience using truss girder frame systems with supplemental devices", J. Constr. Steel. Res., 94, 23-32. https://doi.org/10.1016/j.jcsr.2013.10.016
- Shome, N., Cornell, C.A., Bazzurro, P. and Carballo, J.E. (1998), "Earthquakes, records, and nonlinear responses", Earthq. Spectra., 14(3), 469-500. https://doi.org/10.1193/1.1586011
- Trifunac, M.D. (2008), "Energy of strong motion at earthquake source", Soil Dyn. Earthq. Eng., 28(1), 1-6. https://doi.org/10.1016/j.soildyn.2007.06.009
- Vargas, R. and Bruneau, M. (2009a), "Analytical response and design of buildings with metallic structural fuses. I", J. Struct. Eng., 135(4), 386-393. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:4(386)
- Vargas, R. and Bruneau, M. (2009b), "Experimental response of buildings designed with metallic structural fuses. II", J. Struct. Eng., 135(4), 394-403. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:4(394)
- Wada, A., Connor, J.J., Kawai, H., Iwata, M. and Watanabe, A. (1992), "Damage Tolerant Structure", Proceedings of the 5th US-Japan Workshop on the Improvement of Building Structural Design and Construction Practice, San Diego, CA, USA, September.
- Wang, W., Chan, T.M. and Shao, H.L. (2015), "Seismic performance of beam-column joints with SMA tendons strengthened by steel angles", J. Constr. Steel. Res., 109, 61-71. https://doi.org/10.1016/j.jcsr.2015.02.011
- Wongpakdee, N., Leelataviwat, S., Goel, S.C. and Liao, W. (2014), "Performance-based design and collapse evaluation of buckling restrained knee braced truss moment frames", Eng. Struct., 60, 23-31. https://doi.org/10.1016/j.engstruct.2013.12.014
- Yam, M.C.H., Fang, C., Lam, A.C.C. and Zhang, Y.Y. (2015), "Numerical study and practical design of beam-to-column connections with shape memory alloys", J. Constr. Steel. Res., 104, 177-192. https://doi.org/10.1016/j.jcsr.2014.10.017
- Ye, L.P., Lu, X.Z., Ma, Q.L., Cheng, G.Y., Song, S.Y., Miao, Z.W. and Pan, P. (2008), "Study on the influence of post-yielding stiffness to the seismic response of building structures", Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, October.
- Zahrah, T. and Hall, W. (1984), "Earthquake energy absorption in SDOF structures", J. Struct. Eng., 110(8), 1757-1772. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:8(1757)
Cited by
- A performance-based damage-control design procedure of hybrid steel MRFs with EDBs vol.143, 2018, https://doi.org/10.1016/j.jcsr.2017.12.011
- Cyclic testing of innovative two-level control system: Knee brace & vertical link in series in chevron braced steel frames vol.64, pp.3, 2017, https://doi.org/10.12989/sem.2017.64.3.301
- A lateral load pattern based on energy evaluation for eccentrically braced frames vol.27, pp.5, 2016, https://doi.org/10.12989/scs.2018.27.5.623
- Effect of flexural and shear stresses simultaneously for optimized design of butterfly-shaped dampers: Computational study vol.23, pp.4, 2016, https://doi.org/10.12989/sss.2019.23.4.329
- Sensitivity analysis to determine seismic retrofitting column location in reinforced concrete buildings vol.78, pp.1, 2021, https://doi.org/10.12989/sem.2021.78.1.077
- Energy factor of high-strength-steel frames with energy dissipation bays under repeated near-field earthquakes vol.40, pp.3, 2016, https://doi.org/10.12989/scs.2021.40.3.369
- Hybrid steel staggered truss frame (SSTF): A probabilistic spectral energy modification coefficient surface model for damage-control evaluation and performance insights vol.45, pp.None, 2016, https://doi.org/10.1016/j.jobe.2021.103556