• Title/Summary/Keyword: damage-control

Search Result 3,633, Processing Time 0.035 seconds

Developing a smart structure using integrated DDA/ISMP and semi-active variable stiffness device

  • Karami, Kaveh;Nagarajaiah, Satish;Amini, Fereidoun
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.955-982
    • /
    • 2016
  • Recent studies integrating vibration control and structural health monitoring (SHM) use control devices and control algorithms to enable system identification and damage detection. In this study real-time SHM is used to enhance structural vibration control and reduce damage. A newly proposed control algorithm, including integrated real-time SHM and semi-active control strategy, is presented to mitigate both damage and seismic response of the main structure under strong seismic ground motion. The semi-active independently variable stiffness (SAIVS) device is used as semi-active control device in this investigation. The proper stiffness of SAIVS device is obtained using a new developed semi-active control algorithm based on real-time damage tracking of structure by damage detection algorithm based on identified system Markov parameters (DDA/ISMP) method. A three bay five story steel braced frame structure, which is equipped with one SAIVS device at each story, is employed to illustrate the efficiency of the proposed algorithm. The obtained results show that the proposed control algorithm could significantly decrease damage in most parts of the structure. Also, the dynamic response of the structure is effectively reduced by using the proposed control algorithm during four strong earthquakes. In comparison to passive on and off cases, the results demonstrate that the performance of the proposed control algorithm in decreasing both damage and dynamic responses of structure is significantly enhanced than the passive cases. Furthermore, from the energy consumption point of view the maximum and the cumulative control force in the proposed control algorithm is less than the passive-on case, considerably.

Development of damage control training scenarios of naval ships based on simplified vulnerability analysis results

  • Park, Dong-Ki;Shin, Yun-Ho;Chung, Jung-Hoon;Jung, Eui S.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.386-397
    • /
    • 2016
  • Given the growing interest in damage control training for the naval ships and their organizations, expectations for a new concept of training program have also increased. The existing training programs and its concept focus on training crew to be more proficient and skilled so that they can respond better to damage situations, i.e., fires and flooding. This paper suggests a development procedure of damage control training scenarios using the survivability analysis results as a new concept of damage control training programs employing advanced systems such as damage control console, automation system, and kill cards. This approach could help the decision maker not only enhance his or her capability but also improve the reacting capability of crew members for complex situations induced by a weapon hit.

A Study on the Efficient Generation of Damage Control Onboard Training Scenarios for Naval Ships (손상통제 함상훈련 시나리오의 효율적 생성에 관한 연구)

  • Jung, Jae-Soo;Lee, Hyun Yup;Chung, Jung-Hoon;Kim, Tae-Jin;Kim, Sook-Kyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.5
    • /
    • pp.457-463
    • /
    • 2019
  • Damage control is a very important preliminary and primary activity to improve the survivability of naval ships by preventing spread of damage, and various types of onboard damage control training are conducted regularly on naval ships. The scenarios for these trainings should be well organized to improve the training efficiency. However, at present, it takes much time and effort to generate the training scenarios and there is a problem that the procedures and contents of the scenarios vary widely depending on the persons who generate, without the established methods and standards. In this paper, an efficient generation method of damage control onboard training scenarios has been established, especially for flood and fire o n naval ships. Also a computer program has been developed based on the established method. The results showed that this method and computer program reduce the time and effort to generate these scenarios, and it is hoped that the method be used as a ROK Navy Standard.

Energy-based damage-control design of steel frames with steel slit walls

  • Ke, Ke;Chen, Yiyi
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1157-1176
    • /
    • 2014
  • The objective of this research is to develop a practical design and assessment approach of steel frames with steel slit walls (SSWs) that focuses on the damage-control behavior to enhance the structural resilience. The yielding sequence of SSWs and frame components is found to be a critical issue for the damage-control behavior and the design of systems. The design concept is validated by the full-scale experiments presented in this paper. Based on a modified energy-balance model, a procedure for designing and assessing the system motivated by the framework regarding the equilibrium of the energy demand and the energy capacity is proposed. The damage-control spectra constructed by strength reduction factors calculated from single-degree-of-freedom systems considering the post stiffness are addressed. A quantitative damage-control index to evaluate the system is also derived. The applicability of the proposed approach is validated by the evaluation of example structures with nonlinear dynamic analyses. The observations regarding the structural response and the prediction during selected ground motions demonstrate that the proposed approach can be applied to damage-control design and assessment of systems with satisfactory accuracy.

Energy-factor-based damage-control evaluation of steel MRF systems with fuses

  • Ke, Ke;Yam, Michael C.H.
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.589-611
    • /
    • 2016
  • The primary objectives of this research are to investigate the energy factor response of steel moment resisting frame (MRF) systems equipped with fuses subject to ground motions and to develop an energy-based evaluation approach for evaluating the damage-control behavior of the system. First, the energy factor of steel MRF systems with fuses below the resilience threshold is derived utilizing the energy balance equation considering bilinear oscillators with significant post-yielding stiffness ratio, and the effect of structural nonlinearity on the energy factor is investigated by conducting a parametric study covering a wide range of parameters. A practical transformation approach is also proposed to associate the energy factor of steel MRF systems with fuses with classic design spectra based on elasto-plastic systems. Then, the energy balance is extended to structural systems, and an energy-based procedure for damage-control evaluation is proposed and a damage-control index is also derived. The approach is then applied to two types of steel MRF systems with fuses to explore the applicability for quantifying the damage-control behavior. The rationality of the proposed approach and the accuracy for identifying the damage-control behavior are demonstrated by nonlinear static analyses and incremental dynamic analyses utilizing prototype structures.

Fatigue damage monitoring and evolution for basalt fiber reinforced polymer materials

  • Li, Hui;Wang, Wentao;Zhou, Wensong
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.307-325
    • /
    • 2014
  • A newly developed method based on energy is presented to study the damage pattern of FRP material. Basalt fiber reinforced polymer (BFRP) is employed to monitor the damage under fatigue loading. In this study, acoustic emission technique (AE) combined with scanning electronic microscope (SEM) technique is employed to monitor the damage evolution of the BFRP specimen in an approximate continuous scanning way. The AE signals are analyzed based on the wavelet transform, and the analyses are confirmed by SEM images. Several damage patterns of BFRP material, such as matrix cracking, delamination, fiber fracture and their combinations, are identified through the experiment. According to the results, the cumulative energy (obtained from wavelet coefficients) of various damage patterns are closely related to the damage evolution of the BFRP specimens during the entire fatigue tests. It has been found that the proposed technique can effectively distinguish different damage patterns of FRP materials and describe the fatigue damage evolution.

Neural Network Based Adaptive Control for a Flying-Wing Type UAV with Wing Damage (주익이 손상된 전익형 무인기를 위한 신경회로망 적응제어기법에 관한 연구)

  • Kim, DaeHyuk;Kim, Nakwan;Suk, Jinyoung;Kim, Byungsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.342-349
    • /
    • 2013
  • A damage imposed on an unmanned aerial vehicle changes the flight dynamic characteristics, and makes difficult for a conventional controller based on undamaged dynamics to stabilize the vehicle with damage. This paper presents a neural network based adaptive control method that guarantees stable control performance for an unmanned aerial vehicle even with damage on the main wing. Additionally, Pseudo Control Hedging (PCH) is combined to prevent control performance degradation by actuator characteristics. Asymmetric dynamic equations for an aircraft are chosen to describe motions of a vehicle with damage. Aerodynamic data from wind tunnel test for an undamaged model and a damaged model are used for numerical validation of the proposed control method. The numerical simulation has shown that the proposed control method has robust control performance in the presence of wing damage.

Effect of Several Drugs of DNA, RNA and Protein Damage induced by Dimethylnitrosamine in Mouse Tissues (수종약물이 Dimethylnitrosamine에 의한 DNA, RNA 및 단백질 손상도에 미치는 영향)

  • Kim, Jea-Hyun;Park, Jung-Sik;Hong, Sung-Ryul;Kweon, O-Cheul;Park, Chang-Won;Rhee, Dong-Kwon
    • YAKHAK HOEJI
    • /
    • v.35 no.6
    • /
    • pp.522-529
    • /
    • 1991
  • The purpose of this research is to evaluate effects of chloramphenicol, phenobarbital and progesterone on damage of DNA, RNA and protein which was induced by dimethylnitrosamine. $N,N-Di[^{14}C]$ methyl-nitrosamine (DMN) was used as a damaging agent and levels of DNA, RNA and protein damage in liver, brain and pancreas were compared with a control group. Pretreatment of mice with chloramphenicol increased protein damage in pancreas two times more than the control level. Liver RNA damage was increased up to 5.8 times and brain DNA damage up to 6.95 times by treatment of phenobarbital but brain RNA damage was decreased significantly down to 21% of the control group. The damage of liver RNA was significantly decreased by treatment of progesterone, although liver protein damage, pancreas RNA damage and pancreas protein damage were increased.

  • PDF

Integrated vibration control and health monitoring of building structures: a time-domain approach

  • Chen, B.;Xu, Y.L.;Zhao, X.
    • Smart Structures and Systems
    • /
    • v.6 no.7
    • /
    • pp.811-833
    • /
    • 2010
  • Vibration control and health monitoring of building structures have been actively investigated in recent years but treated separately according to the primary objective pursued. This paper presents a general approach in the time domain for integrating vibration control and health monitoring of a building structure to accommodate various types of control devices and on-line damage detection. The concept of the time-domain approach for integrated vibration control and health monitoring is first introduced. A parameter identification scheme is then developed to identify structural stiffness parameters and update the structural analytical model. Based on the updated analytical model, vibration control of the building using semi-active friction dampers against earthquake excitation is carried out. By assuming that the building suffers certain damage after extreme event or long service and by using the previously identified original structural parameters, a damage detection scheme is finally proposed and used for damage detection. The feasibility of the proposed approach is demonstrated through detailed numerical examples and extensive parameter studies.

Nonlinear seismic damage control of steel frame-steel plate shear wall structures using MR dampers

  • Xu, Longhe;Li, Zhongxian;Lv, Yang
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.937-953
    • /
    • 2014
  • A semi-active control platform comprising the mechanical model of magnetorheological (MR) dampers, the bang-bang control law and damage material models is developed, and the simulation method of steel plate shear wall (SPSW) and optimization method for capacity design of MR dampers are proposed. A 15-story steel frame-SPSW structure is analyzed to evaluate the seismic performance of nonlinear semi-active controlled structures with optimal designed MR dampers, results indicate that the control platform and simulation method are stable and fast, and the damage accumulation effects of uncontrolled structure are largely reduced, and the seismic performance of controlled structures has been improved.