DOI QR코드

DOI QR Code

FRACTIONAL CALCULUS FORMULAS INVOLVING $\bar{H}$-FUNCTION AND SRIVASTAVA POLYNOMIALS

  • Kumar, Dinesh (Department of Mathematics & Statistics Jai Narain Vyas University)
  • 투고 : 2015.12.31
  • 발행 : 2016.10.31

초록

Here, in this paper, we aim at establishing some new unified integral and differential formulas associated with the $\bar{H}$-function. Each of these formula involves a product of the $\bar{H}$-function and Srivastava polynomials with essentially arbitrary coefficients and the results are obtained in terms of two variables $\bar{H}$-function. By assigning suitably special values to these coefficients, the main results can be reduced to the corresponding integral formulas involving the classical orthogonal polynomials including, for example, Hermite, Jacobi, Legendre and Laguerre polynomials. Furthermore, the $\bar{H}$-function occurring in each of main results can be reduced, under various special cases.

키워드

참고문헌

  1. D. Baleanu, D. Kumar, and S. D. Purohit, Generalized fractional integration of the product of two H-functions and a general class of polynomials, Int. J. Comp. Math. 2015 (2015), 10 pages.
  2. R. G. Buschman and H. M. Srivastava, The H-function associated with a certain class of Feynman integrals, J. Phys. A. Math. Gen. 23 (1990), 4707-4710. https://doi.org/10.1088/0305-4470/23/20/030
  3. J. Choi and D. Kumar, Certain unified fractional integrals and derivatives for a product of Aleph function and a general class of multivariable polynomials, J. Inequal. Appl. 2014 (2014), 15 pages.
  4. A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Function. Vol. I, McGraw-Hill, New York-Toronto-London, Reprinted: Krieger, Melbourne-Florida, 1953.
  5. K. C. Gupta and R. C. Soni, On a basic integral formula involving with the product of the H-function and Fox's H-function, J. Raj. Acad. Phys. Sci. 4 (2006), no. 3, 157-164.
  6. A. A. Inayat-Hussain, New properties of hypergeometric series derivable from Feynman integrals. I. Transformation and reduction formulae, J. Phys. A 20 (1987), no. 13, 4109-4117. https://doi.org/10.1088/0305-4470/20/13/019
  7. A. A. Inayat-Hussain, New properties of hypergeometric series derivable from Feynman integrals. II. A generalization of the H-function, J. Phys. A 20 (1987), no. 13, 4119-4128. https://doi.org/10.1088/0305-4470/20/13/020
  8. A. A. Kilbas and M. Saigo, H-Transforms, theory and applications, Chapman & Hall/CRC Press, Boca Raton, FL., 2004.
  9. D. Kumar, P. Agarwal, and S. D. Purohit, Generalized fractional integration of the H-function involving general class of polynomials, Walailak Journal of Science and Technology (WJST) 11 (2014), no. 12, 1019-1030.
  10. D. Kumar and J. Daiya, Generalized fractional differentiation of the H-function involving general class of polynomials, Int. J. Pure Appl. Sci. Technol. 16 (2013), no. 2, 42-53.
  11. D. Kumar, S. D. Purohit, and J. Choi, Generalized fractional integrals involving product of multivariable H-function and a general class of polynomials, J. Nonlinear Sci. Appl. 9 (2016), no. 1, 8-21. https://doi.org/10.22436/jnsa.009.01.02
  12. D. Kumar and R. K. Saxena, Generalized fractional calculus of the M-Series involving $F_3$ hypergeometric function, Sohag J. Math. 2 (2015), no. 1, 17-22.
  13. A. M. Mathai, R. K. Saxena, and H. J. Haubold, The H-Function: Theorey and Applications, Springer, New York, 2010.
  14. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, AWiley Interscience Publication. John Wiley and Sons Inc., New York, 1993.
  15. J. Ram and D. Kumar, Generalized fractional integration involving Appell hypergeometric of the product of two H-functions, Vijanana Prishad Anusandhan Patrika 54 (2011), no. 3, 33-43.
  16. J. Ram and D. Kumar, Generalized fractional integration of the ${\aleph}$-function, J. Rajasthan Acad. Phy. Sci. 10 (2011), no. 4, 373-382.
  17. A. K. Rathie, A new generalization of generalized hypergeometric functions, Matematiche (Catania) 52 (1997), no. 2, 297-310.
  18. M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. Kyushu Univ. 11 (1977/78), no. 2, 135-143.
  19. M. Saigo and A. A. Kilbas, Generalized fractional calculus of the H-function, Fukuoka Univ. Science Reports 29 (1999), no. 1, 31-45.
  20. M. Saigo and N. Maeda, More generalization of fractional calculus, Transform Methods and Special Functions, Varna, Bulgaria (1996), 386-400.
  21. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon et alibi, 1993.
  22. R. K. Saxena, Functional relations involving generalized H-function, Matematiche (Catania) 53 (1998), no. 1, 123-131.
  23. R. K. Saxena, J. Daiya, and D. Kumar, Fractional integration of the ${\bar{H}}$-function and a general class of polynomials via pathway operator, J. Indian Acad. Math. 35 (2013), no. 2, 261-274.
  24. R. K. Saxena and D. Kumar, Generalized fractional calculus of the Aleph-function involving a general class of polynomials, Acta Math. Sci. Ser. B Engl. Ed. 35 (2015), no. 5, 1095-1110.
  25. R. K. Saxena, J. Ram, and D. Kumar, Generalized fractional differentiation of the Aleph-function associated with the Appell function $F_3$, Acta Ciencia Indica 38 (2012), no. 4, 781-792.
  26. R. K. Saxena, J. Ram, and D. Kumar, On the two-dimensional Saigo-Maeda fractional calculus associated with two-dimensional Aleph transform, Matematiche (Catania) 68 (2013), no. 2, 267-281.
  27. Y. Singh and H. K. Mandia, A study of ${\bar{H}}$-function of two variables, Int. J. of Inn. Res. in Sci., Engineering and Technology 2 (2013), no. 9, 4914-4921.
  28. H. M. Srivastava, A contour integral involving Fox's H-function, Indian J. Math. 14 (1972), 1-6.
  29. H. M. Srivastava, R. K. Saxena, and J. Ram, Some multidimensional fractional integral operators involving a general class of polynomials, J. Math. Anal. Appl. 193 (1995), no. 2, 373-389. https://doi.org/10.1006/jmaa.1995.1241
  30. H. M. Srivastava and N. P. Singh, The integration of certain product of the multivariable H-function with a general class of polynomials, Rend. Circ. Mat. Palermo (2) 32 (1983), no. 2, 157-187. https://doi.org/10.1007/BF02844828