참고문헌
- D. Baleanu, D. Kumar, and S. D. Purohit, Generalized fractional integration of the product of two H-functions and a general class of polynomials, Int. J. Comp. Math. 2015 (2015), 10 pages.
- R. G. Buschman and H. M. Srivastava, The H-function associated with a certain class of Feynman integrals, J. Phys. A. Math. Gen. 23 (1990), 4707-4710. https://doi.org/10.1088/0305-4470/23/20/030
- J. Choi and D. Kumar, Certain unified fractional integrals and derivatives for a product of Aleph function and a general class of multivariable polynomials, J. Inequal. Appl. 2014 (2014), 15 pages.
- A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Function. Vol. I, McGraw-Hill, New York-Toronto-London, Reprinted: Krieger, Melbourne-Florida, 1953.
- K. C. Gupta and R. C. Soni, On a basic integral formula involving with the product of the H-function and Fox's H-function, J. Raj. Acad. Phys. Sci. 4 (2006), no. 3, 157-164.
- A. A. Inayat-Hussain, New properties of hypergeometric series derivable from Feynman integrals. I. Transformation and reduction formulae, J. Phys. A 20 (1987), no. 13, 4109-4117. https://doi.org/10.1088/0305-4470/20/13/019
- A. A. Inayat-Hussain, New properties of hypergeometric series derivable from Feynman integrals. II. A generalization of the H-function, J. Phys. A 20 (1987), no. 13, 4119-4128. https://doi.org/10.1088/0305-4470/20/13/020
- A. A. Kilbas and M. Saigo, H-Transforms, theory and applications, Chapman & Hall/CRC Press, Boca Raton, FL., 2004.
- D. Kumar, P. Agarwal, and S. D. Purohit, Generalized fractional integration of the H-function involving general class of polynomials, Walailak Journal of Science and Technology (WJST) 11 (2014), no. 12, 1019-1030.
- D. Kumar and J. Daiya, Generalized fractional differentiation of the H-function involving general class of polynomials, Int. J. Pure Appl. Sci. Technol. 16 (2013), no. 2, 42-53.
- D. Kumar, S. D. Purohit, and J. Choi, Generalized fractional integrals involving product of multivariable H-function and a general class of polynomials, J. Nonlinear Sci. Appl. 9 (2016), no. 1, 8-21. https://doi.org/10.22436/jnsa.009.01.02
-
D. Kumar and R. K. Saxena, Generalized fractional calculus of the M-Series involving
$F_3$ hypergeometric function, Sohag J. Math. 2 (2015), no. 1, 17-22. - A. M. Mathai, R. K. Saxena, and H. J. Haubold, The H-Function: Theorey and Applications, Springer, New York, 2010.
- K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, AWiley Interscience Publication. John Wiley and Sons Inc., New York, 1993.
- J. Ram and D. Kumar, Generalized fractional integration involving Appell hypergeometric of the product of two H-functions, Vijanana Prishad Anusandhan Patrika 54 (2011), no. 3, 33-43.
-
J. Ram and D. Kumar, Generalized fractional integration of the
${\aleph}$ -function, J. Rajasthan Acad. Phy. Sci. 10 (2011), no. 4, 373-382. - A. K. Rathie, A new generalization of generalized hypergeometric functions, Matematiche (Catania) 52 (1997), no. 2, 297-310.
- M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. Kyushu Univ. 11 (1977/78), no. 2, 135-143.
- M. Saigo and A. A. Kilbas, Generalized fractional calculus of the H-function, Fukuoka Univ. Science Reports 29 (1999), no. 1, 31-45.
- M. Saigo and N. Maeda, More generalization of fractional calculus, Transform Methods and Special Functions, Varna, Bulgaria (1996), 386-400.
- S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon et alibi, 1993.
- R. K. Saxena, Functional relations involving generalized H-function, Matematiche (Catania) 53 (1998), no. 1, 123-131.
-
R. K. Saxena, J. Daiya, and D. Kumar, Fractional integration of the
${\bar{H}}$ -function and a general class of polynomials via pathway operator, J. Indian Acad. Math. 35 (2013), no. 2, 261-274. - R. K. Saxena and D. Kumar, Generalized fractional calculus of the Aleph-function involving a general class of polynomials, Acta Math. Sci. Ser. B Engl. Ed. 35 (2015), no. 5, 1095-1110.
-
R. K. Saxena, J. Ram, and D. Kumar, Generalized fractional differentiation of the Aleph-function associated with the Appell function
$F_3$ , Acta Ciencia Indica 38 (2012), no. 4, 781-792. - R. K. Saxena, J. Ram, and D. Kumar, On the two-dimensional Saigo-Maeda fractional calculus associated with two-dimensional Aleph transform, Matematiche (Catania) 68 (2013), no. 2, 267-281.
-
Y. Singh and H. K. Mandia, A study of
${\bar{H}}$ -function of two variables, Int. J. of Inn. Res. in Sci., Engineering and Technology 2 (2013), no. 9, 4914-4921. - H. M. Srivastava, A contour integral involving Fox's H-function, Indian J. Math. 14 (1972), 1-6.
- H. M. Srivastava, R. K. Saxena, and J. Ram, Some multidimensional fractional integral operators involving a general class of polynomials, J. Math. Anal. Appl. 193 (1995), no. 2, 373-389. https://doi.org/10.1006/jmaa.1995.1241
- H. M. Srivastava and N. P. Singh, The integration of certain product of the multivariable H-function with a general class of polynomials, Rend. Circ. Mat. Palermo (2) 32 (1983), no. 2, 157-187. https://doi.org/10.1007/BF02844828