DOI QR코드

DOI QR Code

LIPSCHITZ CRITERIA FOR BI-QUADRATIC FUNCTIONAL EQUATIONS

  • 투고 : 2015.12.29
  • 발행 : 2016.10.31

초록

In this paper, we establish approximation of bi-quadratic functional equations in Lipschitz spaces.

키워드

참고문헌

  1. P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), no. 1-2, 76-86. https://doi.org/10.1007/BF02192660
  2. S. Czerwik and K. Dlutek, Stability of the quadratic functional equation in Lipschitz spaces, J. Math. Anal. Appl. 293 (2004), no. 1, 79-88. https://doi.org/10.1016/j.jmaa.2003.12.034
  3. A. Ebadian, N. Ghobadipour, I. Nikoufar, and M. Gordji, Approximation of the cubic functional equations in Lipschitz spaces, Anal. Theory Appl. 30 (2014), no. 4, 354-362.
  4. J. A. Johnson, Banach spaces of Lipschitz functions and vector-valued Lipschitz functions, Trans. Amer. Math. Soc. 148 (1970), 147-169. https://doi.org/10.1090/S0002-9947-1970-0415289-8
  5. S.-M. Jung and P. K. Sahoo, Hyers-Ulam stability of the quadratic equation of Pexider type, J. Korean Math. Soc. 38 (2001), no. 3, 645-656.
  6. J. R. Lee, S.-Y. Jang, C. Park, and D. Y. Shin, Fuzzy stability of quadratic functional equations, Adv. Difference Equ. 2010 (2010), 16 pages, Article ID 412160.
  7. I. Nikoufar, Perturbation of some functional equations in Lipschitz spaces, 44th Annual Iranian Mathematics Conference, Mashhad, 2013, Iran.
  8. I. Nikoufar, Quartic functional equations in Lipschitz spaces, Rend. Circ. Mat. Palermo 64 (2015), no. 2, 171-176. https://doi.org/10.1007/s12215-014-0187-1
  9. C. Park, On the stability of the quadratic mapping in Banach modules, J. Math. Anal. Appl. 276 (2002), no. 1, 135-144. https://doi.org/10.1016/S0022-247X(02)00387-6
  10. W.-G. Park and J.-H. Bae, Approximate behavior of bi-quadratic mappings in quasinormed spaces, J. Inequal. Appl. 2010 (2010), Art. ID 472721, 8 pages.
  11. J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glas. Mat. Ser. 34 (1999), no. 2, 243-252.
  12. D. Sherbert, Banach algebras of Lipschitz functions, Pacific J. Math. 13 (1963), 1387-1399. https://doi.org/10.2140/pjm.1963.13.1387
  13. D. Sherbert, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc. 111 (1964), 240-272. https://doi.org/10.1090/S0002-9947-1964-0161177-1
  14. F. Skof, Local properties and approximations of operators, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129. https://doi.org/10.1007/BF02924890
  15. J. Tabor, Lipschitz stability of the Cauchy and Jensen equations, Results Math. 32 (1997), no. 1-2, 133-144. https://doi.org/10.1007/BF03322533
  16. J. Tabor, Superstability of the Cauchy, Jensen and isometry equations, Results Math. 35 (1999), no. 3-4, 355-379. https://doi.org/10.1007/BF03322824

피인용 문헌

  1. Behavior of Bi-Cubic Functions in Lipschitz Spaces vol.39, pp.6, 2018, https://doi.org/10.1134/S1995080218060136