참고문헌
- J. Chen, Q. Wang, J. Lv, H. Tang, and X. Li, "Current-voltage-temperature and capacitancevoltage-temperature characteristics of TiW alloy/p-InP Schottky barrier diode," J. Alloy. Compd., Vol. 649, pp. 1220-1225, 2015. https://doi.org/10.1016/j.jallcom.2015.07.239
- B. Akkal, Z. Benamara, N. B. Bouiadjra, S. Tizi, B. Gruzza, "Illumination dependence of I-V and C-V characterization of Au/InSb/InP(1 0 0) Schottky structure," Appl. Surf. Sci., Vol. 253, No. 3, pp. 1065-1070, 2006. https://doi.org/10.1016/j.apsusc.2005.12.170
- V. Janardhanam, H. K. Lee, K. H. Shim, H. B.Hong, S. H. Lee, K. S. Ahn, C. J. Choi, "Temperature dependency and carrier transport mechanisms of Ti/p-type InP Schottky rectifiers," J. Alloy. Compd., Vol. 504, pp. 146-150, 2010. https://doi.org/10.1016/j.jallcom.2010.05.074
- O. F. Yuksel, N. Tugluoglu, H. Safak, and M. Kus, "The modification of Schottky barrier height of Au/p-Si Schottkydevices by perylene-diimide," J. Appl. Phys., Vol. 113, pp. 044507-1-044507-9, 2013. https://doi.org/10.1063/1.4789021
- N. Kavasoglu, C. Tozlu, O. Pakma, A. S. Kavasoglu, S. Ozden, B. Metin, O. Birgi, and S. Oktik, "Room-temperature interface state analysis of Au/Poly(4-vinyl phenol)/p-Si structure," Synth. Met., Vol. 159. No. 17, pp. 1880-1884, 2009.
- M. Cakar, N. Yildirim, S. Karatas, C. Temirci, and A. Turut, "Current-voltage and capacitance-voltage characteristics of Sn/rhodamine- 101 / n - Si and Sn/rhodamine- 101 / p - Si Schottky barrier diodes," J. Appl. Phys., Vol. 100, No. 7, pp. 074505-1-074505-6, 2006. https://doi.org/10.1063/1.2355547
- T. U. Kampen, S. Park, and D. R. T. Zahn, "Barrier height engineering of Ag/GaAs(100) Schottky contacts by a thin organic interlayer," Appl. Surf. Sci., Vol. 190, pp. 461-466, 2002. https://doi.org/10.1016/S0169-4332(01)00919-9
- O. Gullu, "Ultrahigh (100%) barrier modification of n-InP Schottky diode by DNA biopolymer nanofilms," Microelectron. Eng., Vol. 87, No. 4, pp. 648-651, 2010. https://doi.org/10.1016/j.mee.2009.09.001
- M. Soylu, B. Abay, and Y. Onganer, "The effects of annealing on Au/pyronine-B/MD n-InP Schottky structure," J. Phys. Chem. Solids., Vol. 71, No. 9, pp. 1398-1403, 2010. https://doi.org/10.1016/j.jpcs.2010.07.003
- M. E. Aydin, and F. Yakuphanoglu, "Electrical characterization of inorganic-on-organic diode based InP and poly(3,4-ethylenedioxithiophene)/poly(styrenesulfonate)(PEDOT:PSS)," Microelectronics Reliab., Vol. 52, No. 7, pp. 1350-1354, 2012. https://doi.org/10.1016/j.microrel.2012.03.005
- O. Gullu, O. Pakma, and A. Turut, "Current density-voltage analyses and interface characterization in Ag/DNA/p InP structures," J. Appl. Phys., Vol. 111, No. 4, pp. 044503-1-044503-6, 2012. https://doi.org/10.1063/1.3684989
- V. R. Reddy, A. Umapathi, and S. Sankar Naik, "Influence of Annealing on Electrical Properties of an Organic Thin Layer-Based n-Type InP Schottky Barrier Diode," J. Electron. Mater., Vol. 42, No. 6, pp. 1282-1288, 2013. https://doi.org/10.1007/s11664-013-2592-1
- S. Aydogan, M. Saglam, and A. Turut, "On the barrier inhomogeneities of polyaniline/p-Si/Al structure at low temperature," Appl. Surf. Sci., Vol. 250, No. 1, pp. 43-49, 2005. https://doi.org/10.1016/j.apsusc.2004.12.020
- M. Wolszczak, J. Kroh, and M. M. A. Hamid, "Some aspects of the radiation processing of conducting polymers," Radiat. Phys. Chem., Vol. 45, No. 1, pp. 71-78, 1995. https://doi.org/10.1016/0969-806X(94)E0025-E
- G. Gustafsson, G. M. Treacy, Y. Cao, F. Klavetter, N. Colaneri, and A. J. Heeger, "The "plastic" led: A flexible light-emitting device using a polyaniline transparent electrode," Synth. Met., Vol. 57, No. 1, pp. 4123-4127, 1993. https://doi.org/10.1016/0379-6779(93)90568-H
- W. Deqi , D. Wuchang, Y. Shanshan, J. Rui, J. Zhi, and L. Xinyu," Optimization of ohmic contact for Inp-based transrerred electronic devices," J. Semicond., Vol. 35, No. 3, pp. 036001-1-036001-5, 2013. https://doi.org/10.1088/1674-4926/35/3/036001
- O. F. Yuksel, M. Kus, N. Simsir, H. Safak, M. Sahin, and E. Yenel, "A detaile analysis of current- voltage characteristics of Au/perilene monoimide/n-Si Schottky barrier diode over a wide temperature range," J. Appl. Phys.,Vol. 110, No. 26, pp. 024507-1-024513-7, 2011. https://doi.org/10.1063/1.3610394
- P. Koteswara Rao, B. Park, S. T. Lee, Y. K.Noh, M. D. Kim, and J. E. Oh, "Analysis of leakeage current mechanisms in Pt/au Schottky contact on Gapolarity GaN by Frenkel-poolyemission and deep level studies," J. Appl. Phs., Vol. 110, pp. 013716-1-013716-5, 2011. https://doi.org/10.1063/1.3607245
- E.H. Rhoderick, and R.H. Williams, "Metal-Semiconductor Contacts," second ed. Clarendon, Oxford, pp. 39., 1988.
- S.M. Sze, "Physics of Semiconductor Devices", second ed., John Wiley & Sons, New York., 1981.
- R. T. Tung, "Recent advances in Schottky barrier concepts," Mater. Sci. Eng. R., Vol. 35, pp. 1-138, 2001.
- H. K. Henisch, "Semiconductor Contacts," London, Oxford University, 1984.
- A. R. Vearey-Roberts, and D. A. Evans, "Modification of GaAs Schottky diodes by thin organic interlayers," Appl. Phys. Lett., Vol. 86, No. 7, pp. 072105-1-072105-3, 2005. https://doi.org/10.1063/1.1864255
- I. Jyothi, V. Janardhanam, V. R. Reddy, and C. J. Choi, "Modified electrical characteristics of Pt/n-type Ge Schottky diode with a pyronine-B interlayer," Superlattices Microstruct., Vol. 75, pp. 806-817, 2014. https://doi.org/10.1016/j.spmi.2014.09.016
- H. C. Card, and E. H. Rhoderick, "Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes," J. Phys., Vol. 4, No. 10, pp. 1589-1601, 1971.
- M. Saglam, and A. Turut, "Aging effects on the interface state density obtained from current-voltage and capacitance-frequency characteristics of polypyrrole/p-Si/Al structure," J. Appl. Polym. Sci., Vol. 101, No. 4, pp. 2313-2319, 2006. https://doi.org/10.1002/app.23752
- R. F. Schmitsdorf, T. U. Kampen, and W. Monch, "Explanation of the linear correlation between barrier heights and ideality factors of real metalsemiconductor contacts by laterally nonuniform Schottky barriers," J. Vac. Sci. Technol., Vol. 15, No. 4, pp. 1221-1226, 1997. https://doi.org/10.1116/1.589442
- W. Monch, "Barrier heights of real Schottky contacts explained by metal-induced gap states and lateral inhomogeneities," J. Vac. Sci. Technol., Vol. B 17, No. 4, pp. 1867-1876, 1999. https://doi.org/10.1116/1.590839
- Robert W. Jansen, "Theoretical study of native defects and impurities in InP," Phys. Rev. B, Vol. 41, pp. 7666-7673, 1990 https://doi.org/10.1103/PhysRevB.41.7666
- Rohan Mishra, Oscar D. Restrepo, Ashutosh Kumar, and Wolfgang Windl, "Native point defects in binary InP semiconductors," J. Mater. Sci., Vol. 47, pp 7482-7497, 2012 https://doi.org/10.1007/s10853-012-6595-8
-
A.M. Rodrigues, H. L. Gomes, P. Stallinga, L. Pereira, and E. Pereira, "Electrical characterization of CVD diamond-
$n^+$ silicon junctions," Diam. Relat. Mat., Vol. 10, No. 3-7, pp. 858-862, 2001. https://doi.org/10.1016/S0925-9635(00)00571-9 - S. K. Cheung, and N. W. Cheung, "Extraction of Schottky diode parameters from forward currentvoltage characteristics," Appl. Phys. Lett., Vol. 49, pp. 85-87, 1986. https://doi.org/10.1063/1.97359
- H. Norde, "A modified forward I- V plot for Schottky diodes with high series resistance," J. Appl. Phys., Vol, 50, No. 7, pp. 5052-5053, 1979. https://doi.org/10.1063/1.325607
- V. Janardhanam, Y. K. Park, H. J. Yun, K. S. Ahn, and C. J. Choi, "Conduction Mechanism of Se Schottky Contact to n-Type Ge," Eletron. Dev. Lett., Vol. 33, No. 33, pp. 949-951, 2012. https://doi.org/10.1109/LED.2012.2196750
- I. Jyothi, V. Janardhanam, Yi-Rang Lim, V. R. Reddy, Kwang-Soon Ahn, and Chel-Jong Choi, "Effect of copper phthalocyanine (CuPc) interlayer on the electrical characteristics of Au/n-GaN Schottky rectifier," Mater. Sci. Semicond. Process., Vol. 30, pp. 420-428, 2014.
-
M. Gokcen, T. Tunc, S. Altindal, and I. Uslu, "The effect of PVA (
$Bi_2O_3$ -doped) interfacial layer and series resistance on electrical characteristics of Au/n-Si (110) Schottky barrier diodes (SBDs)," Curr. Appl. Phys., Vol. 12, No. 2, pp. 525-530, 2012. https://doi.org/10.1016/j.cap.2011.08.012 - M. Mamor, "Interface gap states and Schottky barrier inhomogeneity at metal/n-type GaN Schottky contacts," J. Phys. Condens. Matter., Vol. 21, pp.335802-1-335802-12, 2009. https://doi.org/10.1088/0953-8984/21/33/335802
- S. R. Forrest, "Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques," Chem. Rev., Vol. 97, No. 6, pp. 1793-1896, 1997. https://doi.org/10.1021/cr941014o
- V. Janardhanam, I. Jyothi, J. H. Lee, J. Y. Kim, V. R. Reddy, and C. J. Choi, "Electrical Properties and Carrier Transport Mechanism of Au/n-GaN Schottky Contact Modified Using a Copper Pthalocyanine (CuPc) Interlayer," Mater. Trans., Vol. 55, No. 5, pp. 758-762, 2014. https://doi.org/10.2320/matertrans.M2013449
- A. C. Varghese, and C. S. Menon, "Electrical properties of hybrid phthalocyanines thin films using gold and lead electrodes," Eur. Phys. J., Vol. 47, No. 4, pp. 485-489, 2005. https://doi.org/10.1140/epjb/e2005-00352-7
- A. A. Kumar, V. R. Reddy, V. Janardhanam, M. W. Seo, H. B. Hong, K. S. Shin, and C. J. Choi, "Electrical Properties of Pt/n-Ge Schottky Contact Modified Using Copper Phthalocyanine (CuPc) Interlayer," J. Electrochem. Soc., Vol. 159, No. 1, pp. H33-H37, 2011. https://doi.org/10.1149/2.041201jes
피인용 문헌
- Modified electrical properties and transport mechanism of Ti/p-InP Schottky structure with a polyvinylpyrrolidone (PVP) polymer interlayer vol.28, pp.6, 2017, https://doi.org/10.1007/s10854-016-6131-8
- Barrier Parameters and Current Transport Characteristics of Ti/p-InP Schottky Junction Modified Using Orange G (OG) Organic Interlayer vol.46, pp.10, 2017, https://doi.org/10.1007/s11664-017-5611-9
- Effect of copper phthalocyanine thickness on surface morphology, optical and electrical properties of Au/CuPc/n-Si heterojunction vol.124, pp.2, 2018, https://doi.org/10.1007/s00339-017-1511-3