DOI QR코드

DOI QR Code

Modification of Schottky Barrier Properties of Ti/p-type InP Schottky Diode by Polyaniline (PANI) Organic Interlayer

  • Reddy, P.R. Sekhar (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC) Chonbuk National University) ;
  • Janardhanam, V. (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC) Chonbuk National University) ;
  • Jyothi, I. (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC) Chonbuk National University) ;
  • Yuk, Shim-Hoon (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC) Chonbuk National University) ;
  • Reddy, V. Rajagopal (Department of Physics, Sri Venkateswara University) ;
  • Jeong, Jae-Chan (Electronics & Telecommunication Research Institute) ;
  • Lee, Sung-Nam (Department of Nano-Optical Engineering, Korea Polytechnic University) ;
  • Choi, Chel-Jong (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC) Chonbuk National University)
  • 투고 : 2016.03.08
  • 심사 : 2016.06.14
  • 발행 : 2016.10.30

초록

The electrical properties of Ti/p-type InP Schottky diodes with and without polyaniline (PANI) interlayer was investigated using current-voltage (I-V) and capacitance-voltage (C-V) measurements. The barrier height of Ti/p-type InP Schottky diode with PANI interlayer was higher than that of the conventional Ti/p-type InP Schottky diode, implying that the organic interlayer influenced the space-charge region of the Ti/p-type InP Schottky junction. At higher voltages, the current transport was dominated by the trap free space-charge-limited current and trap-filled space-charge-limited current in Ti/p-type InP Schottky diode without and with PANI interlayer, respectively. The domination of trap filled space-charge-limited current in Ti/p-type InP Schottky diode with PANI interlayer could be associated with the traps originated from structural defects prevailing in organic PANI interlayer.

키워드

참고문헌

  1. J. Chen, Q. Wang, J. Lv, H. Tang, and X. Li, "Current-voltage-temperature and capacitancevoltage-temperature characteristics of TiW alloy/p-InP Schottky barrier diode," J. Alloy. Compd., Vol. 649, pp. 1220-1225, 2015. https://doi.org/10.1016/j.jallcom.2015.07.239
  2. B. Akkal, Z. Benamara, N. B. Bouiadjra, S. Tizi, B. Gruzza, "Illumination dependence of I-V and C-V characterization of Au/InSb/InP(1 0 0) Schottky structure," Appl. Surf. Sci., Vol. 253, No. 3, pp. 1065-1070, 2006. https://doi.org/10.1016/j.apsusc.2005.12.170
  3. V. Janardhanam, H. K. Lee, K. H. Shim, H. B.Hong, S. H. Lee, K. S. Ahn, C. J. Choi, "Temperature dependency and carrier transport mechanisms of Ti/p-type InP Schottky rectifiers," J. Alloy. Compd., Vol. 504, pp. 146-150, 2010. https://doi.org/10.1016/j.jallcom.2010.05.074
  4. O. F. Yuksel, N. Tugluoglu, H. Safak, and M. Kus, "The modification of Schottky barrier height of Au/p-Si Schottkydevices by perylene-diimide," J. Appl. Phys., Vol. 113, pp. 044507-1-044507-9, 2013. https://doi.org/10.1063/1.4789021
  5. N. Kavasoglu, C. Tozlu, O. Pakma, A. S. Kavasoglu, S. Ozden, B. Metin, O. Birgi, and S. Oktik, "Room-temperature interface state analysis of Au/Poly(4-vinyl phenol)/p-Si structure," Synth. Met., Vol. 159. No. 17, pp. 1880-1884, 2009.
  6. M. Cakar, N. Yildirim, S. Karatas, C. Temirci, and A. Turut, "Current-voltage and capacitance-voltage characteristics of Sn/rhodamine- 101 / n - Si and Sn/rhodamine- 101 / p - Si Schottky barrier diodes," J. Appl. Phys., Vol. 100, No. 7, pp. 074505-1-074505-6, 2006. https://doi.org/10.1063/1.2355547
  7. T. U. Kampen, S. Park, and D. R. T. Zahn, "Barrier height engineering of Ag/GaAs(100) Schottky contacts by a thin organic interlayer," Appl. Surf. Sci., Vol. 190, pp. 461-466, 2002. https://doi.org/10.1016/S0169-4332(01)00919-9
  8. O. Gullu, "Ultrahigh (100%) barrier modification of n-InP Schottky diode by DNA biopolymer nanofilms," Microelectron. Eng., Vol. 87, No. 4, pp. 648-651, 2010. https://doi.org/10.1016/j.mee.2009.09.001
  9. M. Soylu, B. Abay, and Y. Onganer, "The effects of annealing on Au/pyronine-B/MD n-InP Schottky structure," J. Phys. Chem. Solids., Vol. 71, No. 9, pp. 1398-1403, 2010. https://doi.org/10.1016/j.jpcs.2010.07.003
  10. M. E. Aydin, and F. Yakuphanoglu, "Electrical characterization of inorganic-on-organic diode based InP and poly(3,4-ethylenedioxithiophene)/poly(styrenesulfonate)(PEDOT:PSS)," Microelectronics Reliab., Vol. 52, No. 7, pp. 1350-1354, 2012. https://doi.org/10.1016/j.microrel.2012.03.005
  11. O. Gullu, O. Pakma, and A. Turut, "Current density-voltage analyses and interface characterization in Ag/DNA/p InP structures," J. Appl. Phys., Vol. 111, No. 4, pp. 044503-1-044503-6, 2012. https://doi.org/10.1063/1.3684989
  12. V. R. Reddy, A. Umapathi, and S. Sankar Naik, "Influence of Annealing on Electrical Properties of an Organic Thin Layer-Based n-Type InP Schottky Barrier Diode," J. Electron. Mater., Vol. 42, No. 6, pp. 1282-1288, 2013. https://doi.org/10.1007/s11664-013-2592-1
  13. S. Aydogan, M. Saglam, and A. Turut, "On the barrier inhomogeneities of polyaniline/p-Si/Al structure at low temperature," Appl. Surf. Sci., Vol. 250, No. 1, pp. 43-49, 2005. https://doi.org/10.1016/j.apsusc.2004.12.020
  14. M. Wolszczak, J. Kroh, and M. M. A. Hamid, "Some aspects of the radiation processing of conducting polymers," Radiat. Phys. Chem., Vol. 45, No. 1, pp. 71-78, 1995. https://doi.org/10.1016/0969-806X(94)E0025-E
  15. G. Gustafsson, G. M. Treacy, Y. Cao, F. Klavetter, N. Colaneri, and A. J. Heeger, "The "plastic" led: A flexible light-emitting device using a polyaniline transparent electrode," Synth. Met., Vol. 57, No. 1, pp. 4123-4127, 1993. https://doi.org/10.1016/0379-6779(93)90568-H
  16. W. Deqi , D. Wuchang, Y. Shanshan, J. Rui, J. Zhi, and L. Xinyu," Optimization of ohmic contact for Inp-based transrerred electronic devices," J. Semicond., Vol. 35, No. 3, pp. 036001-1-036001-5, 2013. https://doi.org/10.1088/1674-4926/35/3/036001
  17. O. F. Yuksel, M. Kus, N. Simsir, H. Safak, M. Sahin, and E. Yenel, "A detaile analysis of current- voltage characteristics of Au/perilene monoimide/n-Si Schottky barrier diode over a wide temperature range," J. Appl. Phys.,Vol. 110, No. 26, pp. 024507-1-024513-7, 2011. https://doi.org/10.1063/1.3610394
  18. P. Koteswara Rao, B. Park, S. T. Lee, Y. K.Noh, M. D. Kim, and J. E. Oh, "Analysis of leakeage current mechanisms in Pt/au Schottky contact on Gapolarity GaN by Frenkel-poolyemission and deep level studies," J. Appl. Phs., Vol. 110, pp. 013716-1-013716-5, 2011. https://doi.org/10.1063/1.3607245
  19. E.H. Rhoderick, and R.H. Williams, "Metal-Semiconductor Contacts," second ed. Clarendon, Oxford, pp. 39., 1988.
  20. S.M. Sze, "Physics of Semiconductor Devices", second ed., John Wiley & Sons, New York., 1981.
  21. R. T. Tung, "Recent advances in Schottky barrier concepts," Mater. Sci. Eng. R., Vol. 35, pp. 1-138, 2001.
  22. H. K. Henisch, "Semiconductor Contacts," London, Oxford University, 1984.
  23. A. R. Vearey-Roberts, and D. A. Evans, "Modification of GaAs Schottky diodes by thin organic interlayers," Appl. Phys. Lett., Vol. 86, No. 7, pp. 072105-1-072105-3, 2005. https://doi.org/10.1063/1.1864255
  24. I. Jyothi, V. Janardhanam, V. R. Reddy, and C. J. Choi, "Modified electrical characteristics of Pt/n-type Ge Schottky diode with a pyronine-B interlayer," Superlattices Microstruct., Vol. 75, pp. 806-817, 2014. https://doi.org/10.1016/j.spmi.2014.09.016
  25. H. C. Card, and E. H. Rhoderick, "Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes," J. Phys., Vol. 4, No. 10, pp. 1589-1601, 1971.
  26. M. Saglam, and A. Turut, "Aging effects on the interface state density obtained from current-voltage and capacitance-frequency characteristics of polypyrrole/p-Si/Al structure," J. Appl. Polym. Sci., Vol. 101, No. 4, pp. 2313-2319, 2006. https://doi.org/10.1002/app.23752
  27. R. F. Schmitsdorf, T. U. Kampen, and W. Monch, "Explanation of the linear correlation between barrier heights and ideality factors of real metalsemiconductor contacts by laterally nonuniform Schottky barriers," J. Vac. Sci. Technol., Vol. 15, No. 4, pp. 1221-1226, 1997. https://doi.org/10.1116/1.589442
  28. W. Monch, "Barrier heights of real Schottky contacts explained by metal-induced gap states and lateral inhomogeneities," J. Vac. Sci. Technol., Vol. B 17, No. 4, pp. 1867-1876, 1999. https://doi.org/10.1116/1.590839
  29. Robert W. Jansen, "Theoretical study of native defects and impurities in InP," Phys. Rev. B, Vol. 41, pp. 7666-7673, 1990 https://doi.org/10.1103/PhysRevB.41.7666
  30. Rohan Mishra, Oscar D. Restrepo, Ashutosh Kumar, and Wolfgang Windl, "Native point defects in binary InP semiconductors," J. Mater. Sci., Vol. 47, pp 7482-7497, 2012 https://doi.org/10.1007/s10853-012-6595-8
  31. A.M. Rodrigues, H. L. Gomes, P. Stallinga, L. Pereira, and E. Pereira, "Electrical characterization of CVD diamond-$n^+$ silicon junctions," Diam. Relat. Mat., Vol. 10, No. 3-7, pp. 858-862, 2001. https://doi.org/10.1016/S0925-9635(00)00571-9
  32. S. K. Cheung, and N. W. Cheung, "Extraction of Schottky diode parameters from forward currentvoltage characteristics," Appl. Phys. Lett., Vol. 49, pp. 85-87, 1986. https://doi.org/10.1063/1.97359
  33. H. Norde, "A modified forward I- V plot for Schottky diodes with high series resistance," J. Appl. Phys., Vol, 50, No. 7, pp. 5052-5053, 1979. https://doi.org/10.1063/1.325607
  34. V. Janardhanam, Y. K. Park, H. J. Yun, K. S. Ahn, and C. J. Choi, "Conduction Mechanism of Se Schottky Contact to n-Type Ge," Eletron. Dev. Lett., Vol. 33, No. 33, pp. 949-951, 2012. https://doi.org/10.1109/LED.2012.2196750
  35. I. Jyothi, V. Janardhanam, Yi-Rang Lim, V. R. Reddy, Kwang-Soon Ahn, and Chel-Jong Choi, "Effect of copper phthalocyanine (CuPc) interlayer on the electrical characteristics of Au/n-GaN Schottky rectifier," Mater. Sci. Semicond. Process., Vol. 30, pp. 420-428, 2014.
  36. M. Gokcen, T. Tunc, S. Altindal, and I. Uslu, "The effect of PVA ($Bi_2O_3$-doped) interfacial layer and series resistance on electrical characteristics of Au/n-Si (110) Schottky barrier diodes (SBDs)," Curr. Appl. Phys., Vol. 12, No. 2, pp. 525-530, 2012. https://doi.org/10.1016/j.cap.2011.08.012
  37. M. Mamor, "Interface gap states and Schottky barrier inhomogeneity at metal/n-type GaN Schottky contacts," J. Phys. Condens. Matter., Vol. 21, pp.335802-1-335802-12, 2009. https://doi.org/10.1088/0953-8984/21/33/335802
  38. S. R. Forrest, "Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques," Chem. Rev., Vol. 97, No. 6, pp. 1793-1896, 1997. https://doi.org/10.1021/cr941014o
  39. V. Janardhanam, I. Jyothi, J. H. Lee, J. Y. Kim, V. R. Reddy, and C. J. Choi, "Electrical Properties and Carrier Transport Mechanism of Au/n-GaN Schottky Contact Modified Using a Copper Pthalocyanine (CuPc) Interlayer," Mater. Trans., Vol. 55, No. 5, pp. 758-762, 2014. https://doi.org/10.2320/matertrans.M2013449
  40. A. C. Varghese, and C. S. Menon, "Electrical properties of hybrid phthalocyanines thin films using gold and lead electrodes," Eur. Phys. J., Vol. 47, No. 4, pp. 485-489, 2005. https://doi.org/10.1140/epjb/e2005-00352-7
  41. A. A. Kumar, V. R. Reddy, V. Janardhanam, M. W. Seo, H. B. Hong, K. S. Shin, and C. J. Choi, "Electrical Properties of Pt/n-Ge Schottky Contact Modified Using Copper Phthalocyanine (CuPc) Interlayer," J. Electrochem. Soc., Vol. 159, No. 1, pp. H33-H37, 2011. https://doi.org/10.1149/2.041201jes

피인용 문헌

  1. Modified electrical properties and transport mechanism of Ti/p-InP Schottky structure with a polyvinylpyrrolidone (PVP) polymer interlayer vol.28, pp.6, 2017, https://doi.org/10.1007/s10854-016-6131-8
  2. Barrier Parameters and Current Transport Characteristics of Ti/p-InP Schottky Junction Modified Using Orange G (OG) Organic Interlayer vol.46, pp.10, 2017, https://doi.org/10.1007/s11664-017-5611-9
  3. Effect of copper phthalocyanine thickness on surface morphology, optical and electrical properties of Au/CuPc/n-Si heterojunction vol.124, pp.2, 2018, https://doi.org/10.1007/s00339-017-1511-3