참고문헌
- Kitagawa. Y, Nishizawa. S, and Sano. K : Prospective Comparison of 18 F-FDG PET with Conventional Imaging Modalities (MRI, CT, and 67 Ga Scintigraphy) in Assessment of Combined Intraarterial Chemotherapy and Radiotherapy for Head and Neck Carcinoma., vol. 44, no. 2, pp. 198-207, 2003.
- Piert. M, a Koeppe. R, Giordani. B, Minoshima. S, and Kuhl. D. E : Determination of regional rate constants from dynamic FDG-PET studies in Parkinson's disease., J. Nucl. Med., vol. 37, no. 7, pp. 1115-1122, 1996.
- Tomasi. G, Turkheimer. F, and Aboagye. E, : Importance of quantification for the analysis of PET data in oncology: Review of current methods and trends for the future., Mol. Imaging Biol., vol. 14, no. 2, pp. 131-136, 2012. https://doi.org/10.1007/s11307-011-0514-2
- Kadir. A, Almkvist. O, Forsberg. A, Wall, Engler. H, LngstrLm. B. L, and Nordberg. A : Dynamic changes in PET amyloid and FDG imaging at different stages of Alzheimer's disease., Neurobiol. Aging, vol. 33, no. 1, pp. 198.e1-198.e14, 2012. https://doi.org/10.1016/j.neurobiolaging.2010.06.015
- Kumar. R. P, Senthil. T : 3D Reconstruction Of Facial Structures From 2D Images For Cosmetic Surgery., IEEE-International Conf. Recent Trends Inf. Technol., vol. 67, pp. 1049-1054, 2011.
- Johnson. K. A, Minoshima. S, Bohnen. N. I, Donohoe. K. J, Foster. N. L, Herscovitch. P, Karlawish. J. H, Rowe. C. C, Carrillo. M. C, Hartley. D. M, Hedrick. S, Pappas. V, and Thies. W. H : Appropriate use criteria for amyloid PET: A r ep ort of the Amyloid Imaging Task Force., the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer's Association, Alzheimer's Dement., vol. 9, no. 1, pp.E1-E16, 2013. https://doi.org/10.1016/S1552-5260(13)00111-8
- Nassalski. A, Kapusta. M, Batsch. T, Wolski. D, MLckel. D, Enghardt. W, and Moszynski. M : Comparative Study of Scintillators for PET / CT Detectors., IEEE Transactions on Nuclear Science, vol. 54, no. 1. pp. 3-10, 2007. https://doi.org/10.1109/TNS.2006.890013
- Li. H. H and Votaw. J. R : Optimization of PET activation studies based on the SNR measured in the 3-D Hoffman brain phantom., IEEE Trans. Med. Imaging, vol. 17, no. 4, pp. 596-605, 1998. https://doi.org/10.1109/42.730404
- Townsend. D. W : Positron Emission Tomography/Computed Tomography., Semin. Nucl. Med., vol. 38, no. 3, pp. 152-166, 2008. https://doi.org/10.1053/j.semnuclmed.2008.01.003
- Zanzonico. P. B, Finn. R, Pentlow. K. S, Erdi. Y, Beattie. B, Akhurst. T, Squire. O, Morris. M, Scher. H, McCarthy. T, Welch. M, Larson. S. M, and Humm. J. L : PET-based radiation dosimetry in man of18Ffluorodihydrotestosterone, a new radiotracer for imaging prostate cancer., J. Nucl. Med., vol. 45, no. 11, pp. 1966-1971, 2004.
- Wernick. M. N, Wang. G, Kao. C.-M, Yap. J. T, Mukherjee. J, Cooper. M, and Chen. C.-T : An image reconstruction method for dynamic PET, Nucl. Sci. Symp. Med. Imaging Conf. Rec. IEEE, vol. 3, no. 2, pp. 1718-1722 vol.3, 1995.
- Zhou, Y. et al. : Improved parametric image generation using spatial-temporal analysis of dynamic PET studies. NeuroImage, 15(3), pp.697-707, 2002. https://doi.org/10.1006/nimg.2001.1021
- SLnchez-Crespo. A, Andreo. P, and Larsson. S. A : Positron flight in human tissues and its influence on PET image spatial resolution., Eur. J. Nucl. Med. Mol. Imaging, vol. 31, no. 1, pp. 44-51, 2004. https://doi.org/10.1007/s00259-003-1330-y
- Wernick. M. N, Infusino. E. J, and Milosevic. M: Fast spatio-temporal image reconstruction for dynamic PET., IEEE Trans. Med. Imaging, vol. 18, no. 3, pp. 185-195, 1999. https://doi.org/10.1109/42.764885
- Boellaard. R : Standards for PET Image Acquisition and Quantitative Data Analysis., J. Nucl. Med., vol. 50, no. Suppl 1, p. 11S-20S, 2008.
- Riddell. C, Carson. R. E, Carrasquillo. J. a, Libutti. S. K, Danforth. D. N, Whatley. M, and Bacharach. S. L : Noise reduction in oncology FDG PET images by iterative reconstruction: a quantitative assessment. : J. Nucl. Med., vol. 42, no. 9, pp. 1316-1323, 2001.
- Dimitrakopoulou-Strauss. A, Strauss. L. G, Schwarzbach. M, Burger. C, Heichel. T, Willeke. F, Mechtersheimer. G, and Lehnert. T : Dynamic PET 18F-FDG studies in patients with primary and recurrent soft-tissue sarcomas: impact on diagnosis and correlation with grading, 2001
- Pedersen. F, Bergstr. M,Bengtsson. E, and LLngstr. B : Principal component analysis of dynamic positron emission tomography images., Eur. J. Nucl. Med., vol. 21, no. 12, pp. 1285-1292, 1994. https://doi.org/10.1007/BF02426691
- Zhang. N, Wang. J. L and, Chen. Y. S : Image parallel processing based on GPU, Proc. - 2nd IEEE Int. Conf. Adv. Comput. Control. ICACC 2010, vol. 3, pp. 367-370, 2010.
- Jung. Y.-J, Gonzalez. J, and Godavarty. A : Functional near-infrared imaging reconstruction based on spatiotemporal features: venous occlusion studies, Applied Optics, vol. 54, no. 13. pp. D82-D90, 2015. https://doi.org/10.1364/AO.54.000D82
- Jagust. W. J, Seab. J. P, Huesman. R. H, Valk. P. E, aMathis. C, Reed. B. R, Coxson. P. G, and Budinger. T. F : Diminished glucose transport in Alzheimer's disease: dynamic PET studies., J. Cereb. Blood Flow Metab., vol. 11, no. 2, pp. 323-30, 1991. https://doi.org/10.1038/jcbfm.1991.65
- Praus. P : Water quality assessment using SVD-based principal component analysis of hydrological data, Water SA, vol. 31, no. 4, pp. 417-422, 2005.
- Gonzalez. R. C and Woods. R. E, Digital Image Processing, 3rd ed. New jersey: Prentice Hall, 2008.
- Jung. Y-J, D-W Kim J-Y Lee, C-H Im, Comparision of ICA-based and MUSIC-based Approaches Used for the Extraction of Source time series and Causality Analysis. J. Biomed. Eng. Res, vol. 29, pp. 329-336, 2008.