DOI QR코드

DOI QR Code

특이값 분해 기반 Dynamic PET 영상의 노이즈 제거 기법 : 예비 연구

Singular Value Decomposition based Noise Reduction Technique for Dynamic PET I mage : Preliminary study

  • 편도영 (동서대학교 보건과학과) ;
  • 김정수 (동남보건대학교 방사선과) ;
  • 백철하 (동서대학교 보건과학과) ;
  • 정영진 (동서대학교 보건과학과)
  • 투고 : 2016.04.30
  • 심사 : 2016.06.18
  • 발행 : 2016.06.30

초록

동적 양전자방출단층 촬영은 3차원의 공간적 정보와 추가적인 1차원의 시계열 정보가 함께 존재하는 시공간 정보(4차원)의 데이터를 활용할 수 있어서 전통적인 영상기법에 비해 임상 진단 및 분석에 활용할 수 있는 정보의 양이 급격히 증가된 의료영상 촬영기법이다. 그러나, 인체에 주입할 수 있는 방사성 동위원소의 양의 제한 및 검출기 특징에 따른 감마선 검출의 제한 등이 영상을 재구성 하는 것에 제약사항으로 존재하여, 고화질 의료 영상의 획득에 어려움이 존재하여 임상적 활용의 제한사항이 되어왔다. 본 연구에서는, 4차원 영상의 적극적인 임상 활용을 위해서 영상의 화질을 개선하고 정량적인 평가를 할 수 있는 영상 기법을 연구하였다. 이를 위해, Matlab을 이용하여 영상의 여러 독립적인 신호원을 분리하여 영상의 신호와 노이즈로 구분할 수 있도록, 선형 대수학의 기법 중 하나인 특이값 분해를 활용하였다. 이를 통해, 개선된 동적 양전자방출단층 영상은 정량적인 평가를 통하여, 원래 영상에 비해 SNR이 최소 5%에서 최대 30%까지 증가하는 것을 확인하였다. 이러한 연구 결과는 향후 dynamic PET 연구의 기초적인 도구로 활용될 것이라 기대된다.

Dynamic positron emission tomography(dPET) is widely used medical imaging modality that can provide both physiological and functional neuro-image for diagnosing various brain disease. However, dPET images have low spatial-resolution and high noise level during spatio-temporal analysis (three-dimensional spatial information + one-dimensional time information), there by limiting clinical utilization. In order to overcome these issues for the spatio-temporal analysis, a novel computational technique was introduced in this paper. The computational technique based on singular value decomposition classifies multiple independent components. Signal components can be distinguished from the classified independent components. The results show that signal to noise ratio was improved up to 30% compared with the original images. We believe that the proposed computational technique in dPET can be useful tool for various clinical / research applications.

키워드

참고문헌

  1. Kitagawa. Y, Nishizawa. S, and Sano. K : Prospective Comparison of 18 F-FDG PET with Conventional Imaging Modalities (MRI, CT, and 67 Ga Scintigraphy) in Assessment of Combined Intraarterial Chemotherapy and Radiotherapy for Head and Neck Carcinoma., vol. 44, no. 2, pp. 198-207, 2003.
  2. Piert. M, a Koeppe. R, Giordani. B, Minoshima. S, and Kuhl. D. E : Determination of regional rate constants from dynamic FDG-PET studies in Parkinson's disease., J. Nucl. Med., vol. 37, no. 7, pp. 1115-1122, 1996.
  3. Tomasi. G, Turkheimer. F, and Aboagye. E, : Importance of quantification for the analysis of PET data in oncology: Review of current methods and trends for the future., Mol. Imaging Biol., vol. 14, no. 2, pp. 131-136, 2012. https://doi.org/10.1007/s11307-011-0514-2
  4. Kadir. A, Almkvist. O, Forsberg. A, Wall, Engler. H, LngstrLm. B. L, and Nordberg. A : Dynamic changes in PET amyloid and FDG imaging at different stages of Alzheimer's disease., Neurobiol. Aging, vol. 33, no. 1, pp. 198.e1-198.e14, 2012. https://doi.org/10.1016/j.neurobiolaging.2010.06.015
  5. Kumar. R. P, Senthil. T : 3D Reconstruction Of Facial Structures From 2D Images For Cosmetic Surgery., IEEE-International Conf. Recent Trends Inf. Technol., vol. 67, pp. 1049-1054, 2011.
  6. Johnson. K. A, Minoshima. S, Bohnen. N. I, Donohoe. K. J, Foster. N. L, Herscovitch. P, Karlawish. J. H, Rowe. C. C, Carrillo. M. C, Hartley. D. M, Hedrick. S, Pappas. V, and Thies. W. H : Appropriate use criteria for amyloid PET: A r ep ort of the Amyloid Imaging Task Force., the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer's Association, Alzheimer's Dement., vol. 9, no. 1, pp.E1-E16, 2013. https://doi.org/10.1016/S1552-5260(13)00111-8
  7. Nassalski. A, Kapusta. M, Batsch. T, Wolski. D, MLckel. D, Enghardt. W, and Moszynski. M : Comparative Study of Scintillators for PET / CT Detectors., IEEE Transactions on Nuclear Science, vol. 54, no. 1. pp. 3-10, 2007. https://doi.org/10.1109/TNS.2006.890013
  8. Li. H. H and Votaw. J. R : Optimization of PET activation studies based on the SNR measured in the 3-D Hoffman brain phantom., IEEE Trans. Med. Imaging, vol. 17, no. 4, pp. 596-605, 1998. https://doi.org/10.1109/42.730404
  9. Townsend. D. W : Positron Emission Tomography/Computed Tomography., Semin. Nucl. Med., vol. 38, no. 3, pp. 152-166, 2008. https://doi.org/10.1053/j.semnuclmed.2008.01.003
  10. Zanzonico. P. B, Finn. R, Pentlow. K. S, Erdi. Y, Beattie. B, Akhurst. T, Squire. O, Morris. M, Scher. H, McCarthy. T, Welch. M, Larson. S. M, and Humm. J. L : PET-based radiation dosimetry in man of18Ffluorodihydrotestosterone, a new radiotracer for imaging prostate cancer., J. Nucl. Med., vol. 45, no. 11, pp. 1966-1971, 2004.
  11. Wernick. M. N, Wang. G, Kao. C.-M, Yap. J. T, Mukherjee. J, Cooper. M, and Chen. C.-T : An image reconstruction method for dynamic PET, Nucl. Sci. Symp. Med. Imaging Conf. Rec. IEEE, vol. 3, no. 2, pp. 1718-1722 vol.3, 1995.
  12. Zhou, Y. et al. : Improved parametric image generation using spatial-temporal analysis of dynamic PET studies. NeuroImage, 15(3), pp.697-707, 2002. https://doi.org/10.1006/nimg.2001.1021
  13. SLnchez-Crespo. A, Andreo. P, and Larsson. S. A : Positron flight in human tissues and its influence on PET image spatial resolution., Eur. J. Nucl. Med. Mol. Imaging, vol. 31, no. 1, pp. 44-51, 2004. https://doi.org/10.1007/s00259-003-1330-y
  14. Wernick. M. N, Infusino. E. J, and Milosevic. M: Fast spatio-temporal image reconstruction for dynamic PET., IEEE Trans. Med. Imaging, vol. 18, no. 3, pp. 185-195, 1999. https://doi.org/10.1109/42.764885
  15. Boellaard. R : Standards for PET Image Acquisition and Quantitative Data Analysis., J. Nucl. Med., vol. 50, no. Suppl 1, p. 11S-20S, 2008.
  16. Riddell. C, Carson. R. E, Carrasquillo. J. a, Libutti. S. K, Danforth. D. N, Whatley. M, and Bacharach. S. L : Noise reduction in oncology FDG PET images by iterative reconstruction: a quantitative assessment. : J. Nucl. Med., vol. 42, no. 9, pp. 1316-1323, 2001.
  17. Dimitrakopoulou-Strauss. A, Strauss. L. G, Schwarzbach. M, Burger. C, Heichel. T, Willeke. F, Mechtersheimer. G, and Lehnert. T : Dynamic PET 18F-FDG studies in patients with primary and recurrent soft-tissue sarcomas: impact on diagnosis and correlation with grading, 2001
  18. Pedersen. F, Bergstr. M,Bengtsson. E, and LLngstr. B : Principal component analysis of dynamic positron emission tomography images., Eur. J. Nucl. Med., vol. 21, no. 12, pp. 1285-1292, 1994. https://doi.org/10.1007/BF02426691
  19. Zhang. N, Wang. J. L and, Chen. Y. S : Image parallel processing based on GPU, Proc. - 2nd IEEE Int. Conf. Adv. Comput. Control. ICACC 2010, vol. 3, pp. 367-370, 2010.
  20. Jung. Y.-J, Gonzalez. J, and Godavarty. A : Functional near-infrared imaging reconstruction based on spatiotemporal features: venous occlusion studies, Applied Optics, vol. 54, no. 13. pp. D82-D90, 2015. https://doi.org/10.1364/AO.54.000D82
  21. Jagust. W. J, Seab. J. P, Huesman. R. H, Valk. P. E, aMathis. C, Reed. B. R, Coxson. P. G, and Budinger. T. F : Diminished glucose transport in Alzheimer's disease: dynamic PET studies., J. Cereb. Blood Flow Metab., vol. 11, no. 2, pp. 323-30, 1991. https://doi.org/10.1038/jcbfm.1991.65
  22. Praus. P : Water quality assessment using SVD-based principal component analysis of hydrological data, Water SA, vol. 31, no. 4, pp. 417-422, 2005.
  23. Gonzalez. R. C and Woods. R. E, Digital Image Processing, 3rd ed. New jersey: Prentice Hall, 2008.
  24. Jung. Y-J, D-W Kim J-Y Lee, C-H Im, Comparision of ICA-based and MUSIC-based Approaches Used for the Extraction of Source time series and Causality Analysis. J. Biomed. Eng. Res, vol. 29, pp. 329-336, 2008.