DOI QR코드

DOI QR Code

Phosphorus Removal from Municipal Wastewater Using Ti-based Coagulants

티타늄계열응집제를 이용한 하수 내 인 제거

  • Shin, So-Yeon (Department of Environmental Engineering, Kangwon National University) ;
  • Kim, Jong-Ho (Department of Applied Chemical Engineering, Chonnam National University) ;
  • Ahn, Johng-Hwa (Department of Environmental Engineering, Kangwon National University)
  • Received : 2016.06.10
  • Accepted : 2016.07.19
  • Published : 2016.08.31

Abstract

This study evaluated the efficacy of Ti-based coagulants on phosphorus (P) removal from municipal wastewater and compared them with Al-based coagulants. Jar test experiments were performed at various chemical doses and OH/Ti molar ratio (B value). The higher the intial phosphate ($PO_4-P$) concentration, the lower the [Ti]/[P] to reach a residual concentration below 0.2 mg P/L. Removal efficiencies of total phosphorus increased with an increased coagulant dose but decreased after the efficiencies reached their maximum value regardless of coagulant or B value. On the other hand, $PO_4-P$ removal showed an increasing trend with an increased coagulant dose, reaching the plateau value under large coagulant dose conditions for both Ti- and Al-based coagulants regardless of B value. The chemical dose of Ti-based coagulants was approximately twice higher than that of Al-based coagulants with the same P-removal efficiency. The coagulation efficiency was influenced by different B values.

본 연구에서는 하수 내 인 제거 시 티타늄계열 응집제의 인 제거특성을 알아보기 위해 알루미늄계열 응집제와 비교하였다. Jar-tester를 이용하여 다양한 OH/Ti 몰비(B값)의 응집제를 투여하여 실험을 진행하였다. 초기 인 농도가 증가할수록 처리 후 $PO_4-P$ 농도가 0.2 mg P/L 이하에 도달하기 위한 [Ti]/[P]는 감소하였다. T-P 제거효율은 응집제 주입량이 증가할수록 높아졌지만, 최고 제거효율에 도달한 후에는 B값에 관계없이 감소하였다. 반면에 $PO_4-P$ 제거율은 최고점에 도달한 후 B값에 상관없이 일정하게 유지하는 경향이 나타났다. 동일한 인 제거효율에서 Ti계열 응집제의 주입량은 Al계열 응집제보다 약 2배정도 높았다. 또한, Ti계열 응집제의 B값에 따라 인제거효율에 영향을 미쳤다.

Keywords

References

  1. Ministry of Environment, Water Quality and Ecosystem Conservation Act(2014).
  2. Kim, S. J. Lee, J. H., Cho, H. S., Chung, I. Y., Jin, Y. H., Kim, S. H., Kim, H. S., Park, J. R., Lee, M. S., Han, H. J., Park, S. Y., Seong, K. S., Woo, M. H., Lee, S. H. and Yang, H. J., Characteristics of Residual Metals from Phosphorus Removal in Sewage Treatment Plants Around Paldang Lake, NIER-RP 2012-333, National Institute of Environmental Research (NIER), p. 1(2012).
  3. Kim, S. H. and Cheon, C. H., "Variation in Aluminum Concentration During Water Treatment and Its Causes," J. Korean Soc. Environ. Eng., 17(12), 1289-1297(1995).
  4. Nayak, P., "Aluminium : Impacts and Disease," Environ. Res., Section A, 89, 101-115(2002). https://doi.org/10.1006/enrs.2002.4352
  5. Vuorinen, P., Keinanen, M., Peuranen, S. and Tigerstedt, C., "Effects of Iron, Aluminium, Dissolved Humic Material and Acidity on Grayling (Thymallus thymallus) in Laboratory Exposures, and a Comparison of Sensitivity with Brown Trout (Salmo trutta)," Boreal Environ. Res., 3, 405-419(1999).
  6. Kim, J. B., Park, H. J., Lee, K. W., Jo, A. R., Kim, M. W., Lee, Y. J., Park, S. M., Lee, K. Y., Shon, H. K. and Kim, J. H., "Application of Ti-salt Coagulant and Sludge Recycling for Phosphorus Removal in Biologically Treated Sewage Effluent," Korean J. Chem. Eng. Res., 51(2), 257-262(2013). https://doi.org/10.9713/kcer.2013.51.2.257
  7. Shon, H. K., Vigneswaran, S., Kim, I. S., Cho, J., Kim, G. J., Kim, J. B. and Kim, J. H., "Preparation of Titanium Dioxide ($TiO_2$) from Sludge Produced by Titanium Tetrachloride ($TiCl_4$) Flocculation of Wastewater," Environ. Sci. Technol., 41(4), 1372-1377(2007). https://doi.org/10.1021/es062062g
  8. Upton, W. V. and Buswell, A. M., "Titanium Salts in Water Purification," Ind. Eng. Chem. Res., 29(8), 870-871(1937). https://doi.org/10.1021/ie50332a006
  9. World Health Organization (WHO), http://www.inchem.org/ documents/ehc/ehc/ehc24.htm(1982).
  10. Mishnaevsky, Jr. L., Levashov, E., Valiev, R. Z., Segurado, J., Sabirov, I., Enikeev, N., Prokoshkin, S., Solovyov, A. V., Korotitskiy, A., Gutmanas, E., Gotman, I., Rabkin, E., Psakh'e, S., Dluhos, L., Seefeldt, M. and Smolin, A., "Nanostructured Titanium-Based Materials for Medical Implants: Modeling and Development," Mater. Sci. Eng., 81, 1-19 (2014). https://doi.org/10.1016/j.mser.2014.04.002
  11. Sun, Y., Zhou, G., Xiong, X, Guan, X., Li, L. and Bao, H., "Enhanced Arsenite Removal from Water by $Ti(SO_4)_2$ Coagulation," Water Res., 47, 4340-4348(2013). https://doi.org/10.1016/j.watres.2013.05.028
  12. Wu, Y.-F., Liu, W., Gao, N.-Y. and Tao, T., "A Study of Titanium Sulfate Flocculation for Water Treatment," Water Res., 45(12), 3704-3711(2011). https://doi.org/10.1016/j.watres.2011.04.023
  13. Zhao, Y. X., Gao, B. Y., Shon, H., Cao, B. and Kim, J. H., "Coagulation Characteristics of Titanium (Ti) Salt Coagulant Compared with Aluminum (Al) and Iron (Fe) Salts," J. Hazard. Mater., 185, 1536-1542(2011). https://doi.org/10.1016/j.jhazmat.2010.10.084
  14. Zhao, Y. X., Gao, B. Y., Shon, H., Kim, J. H., Yue, Q. Y. and Wang, Y., "Floc Characteristics of Titanium Tetrachloride ($TiCl_4$) Compared with Aluminum and Iron Salts in Humic Acid-Kaolin Synthetic Water Treatment," Sep. Purific. Technol., 81, 332-338(2011). https://doi.org/10.1016/j.seppur.2011.07.041
  15. Han, S. W. and Kang, L. S., "Comparison of PACl with Al (III) Coagulants in Water Treatment and its Characterization," J. Korea Soc. Water Qual., 15(3), 345-352(1999).
  16. Zhao, Y. X., Phuntsho, S., Gao, B. Y., Huang, X., Qi, Q. B., Yue, Q. Y., Wang, Y., Kim, J. H. and Shon, H. K., "Preparation and Characterization of Novel Polytitanium Tetrachloride Coagulant for Water Purification," Environ. Sci. Technol., 47, 12966-12975(2013). https://doi.org/10.1021/es402708v
  17. Zhao, Y. X., Phuntsho, S., Gao, B. Y., Yang, Y. Z., Kim, J. H. and Shon, H. K., "Comparison of a Novel Polytitanium Chloride Coagulant with Polyaluminium Chloride: Coagulation Performance and Floc Characteristics," J. Environ. Manage., 147, 194-202(2015). https://doi.org/10.1016/j.jenvman.2014.09.023
  18. Shin, S., Kim, J. and Ahn, J., "Optimization of $TiCl_4$ Concentration and Initial pH for Phosphorus Removal in Synthetic Wastewater," J. Korean Soc. Water Environ., 31(6), 619-624(2015). https://doi.org/10.15681/KSWE.2015.31.6.619
  19. American Public Health Association, American Water Works Association and Water Environment Federation (APHA, AWWA, and WEF), Standard Method for the Examination of Water & Wastewater, 22nd Edition, American Public Health Association, American Water Works Association and Water Environment Federation, Washington D. C., USA(2012).
  20. Kim, C. M., Gil, H. K., Shim, M. H., Cho, H. Y., Park, C. H., Lee, M. Y. and Eo, S. M., "Water Quality and Ecotoxicity Assessment of Sewage Treatment Centers in Seoul," Report of Seoul Metropolitan Government Res. Inst. Public Health and Environ. (S.I.H.E), 48, 173-182(2012).
  21. Kim, Y., Chang, I. S. and Lee, D. R., "Design Considerations of Reuse Treatment Facility for the Secondary Effluent from municipal Wastewater Treatment Plant," J. Korean Soc. Environ. Eng., 25(8), 946-954(2003).
  22. Zhao, Y. X., Gao, B. Y., Shon, H. K., Kim, J. H., Yue, Q. Y. and Bo, X. W., "Anionic Polymer Compound Bioflocculant as a Coagulant Aid with Aluminum Sulfate and Titanium Tetrachloride," Bioresour. Technol., 108, 45-54(2012). https://doi.org/10.1016/j.biortech.2012.01.012
  23. Zhao, Y. X., Gao, B. Y., Zhang, G. Z., Phuntsho, S. and Shon, H. K., "Coagulation by Titanium Tetrachloride for Fulvic Acid Removal: Factors influencing Coagulation Efficiency and Floc Characteristics," Desalination, 335, 70-77 (2014). https://doi.org/10.1016/j.desal.2013.12.016
  24. Ministry of Environment, Emission Standard of Water Pollution(2014).
  25. Tran, N., Drogui, P., Blais, J. F. and Mercier, G., "Phosphorus Removal from Spiked Municipal Wastewater using Either Electrochemical Coagulation or Chemical Coagulation as Tertiary Treatment," Sep. Purific. Technol., 95, 16-25(2012). https://doi.org/10.1016/j.seppur.2012.04.014
  26. Banu, R. J., Do, K. U. and Yeom, I. T., "Phosphorus Removal in Low Alkalinity Secondary Effluent using Alum," Environ. Sci. Technol., 5(1), 93-98(2008).
  27. Kim, S. S., Kim, H. J., Lee, K. S. and Cho, J. H., "A Study on the Treatment of Domestic Wastewater by using Coagulant," J. Korea Soc. Environ. Admin., 19(2), 61-66(2013).
  28. Diamadopoulos, E. and Vlachos, C., "Coagulation-Filtration of a Secondary Effluent by Means of Prehydrolyzed Coagulants," Water Sci. Technol., 33(10), 193-201(1996). https://doi.org/10.1016/0273-1223(96)00420-9
  29. Han, S. W. and Kang, L. S., "Removal Mechanism of Phosphorus in Wastewater Effluent using Coagulation Process," J. Korean Soc. Environ. Eng., 32(8), 774-779(2010).
  30. Zouboulis, A. I. and Tzoupanos, N. D., "Polyaluminium Silicate Chloride-A Systematic Study for the Preparation and Application of an Efficient Coagulant for Water or Wastewater Treatment," J. Hazard. Mater., 162, 1379-1389(2009). https://doi.org/10.1016/j.jhazmat.2008.06.019

Cited by

  1. Chemical Phosphorus Recovery from Ash and Dried Sewage Sludge Produced by Titanium Tetrachloride Flocculation vol.35, pp.6, 2018, https://doi.org/10.9786/kswm.2018.35.6.493