DOI QR코드

DOI QR Code

열분해잔사유로부터 불균일계 불소화공정에 의해 제조된 메조페이스 피치의 특성

The Characteristics of Mesophase Pitch Prepared by Heterogeneous Fluorination Process from Pyrolysis Fuel Oil

  • 김도영 (충남대학교 응용화학공학과) ;
  • 김지현 (충남대학교 응용화학공학과) ;
  • 이형익 (국방과학연구소 제4연구본부) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Kim, Do Young (Department of Chemical engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, Ji-Hyun (Department of Chemical engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Hyung-Ik (The 4th R&D Institute-4, Agency for Defense Development) ;
  • Lee, Young-Seak (Department of Chemical engineering and Applied Chemistry, Chungnam National University)
  • 투고 : 2016.09.13
  • 심사 : 2016.09.24
  • 발행 : 2016.10.10

초록

본 연구에서는 불균일계 불소화 개질 공정을 이용하여 열분해잔사유(PFO)로부터 메조페이스 피치를 제조하였다. 이 공정은 다양한 온도의 직접 불소화 공정과 $390^{\circ}C$의 열처리 공정을 통하여 진행하였다. 제조된 피치는 연화점, 원소분석, 푸리에 변환 적외선 분광 분석, 고분해능 X-ray 회절 분석 그리고 편광 현미경 분석을 실시하였다. 제조된 피치의 탄소 함량은 직접 불소화 공정의 반응 온도 증가에 따라 함께 상승하였으며, 그 산소, 질소 그리고 황 성분은 완전하게 제거되었다. 불소화 온도가 증가함에 따라서, 메조페이스 소구체의 생성, 성장, 합체, 정렬이 관찰되었다. 탄소 육각망면의 층간간격이 감소하였고 결정자 크기가 증가하였다. 또한, 지방족 화합물의 축 중합으로 인한 방향족 화합물의 함량 증가가 관찰되었다. 이러한 결과는 반응 온도의 증가에 따라 증가된 불소 라디칼의 반응성에 기인한다. 불소화 반응은 열분해잔사유가 라디칼 반응에 의한 중합반응의 촉진으로, 방향족 화합물의 생성을 돕는 것으로 판단된다.

In this study, we have prepared mesophase pitch from pyrolysis fuel oil (PFO) by heterogeneous reforming process. This process was conducted by direct fluorination at various temperature and followed by the heat treatment at $390^{\circ}C$. The reformed pitch was then investigated by softening point analysis, elemental analysis, fourier-transform infrared spectroscopy, high resolution X-ray diffraction and polarization microscope analysis. Carbon contents of reformed pitch increased according to increasing the reaction temperature of fluorination, while oxygen, nitrogen and sulfur contents were completely eliminated. As the fluorination temperature increased, the creation, growth, coalescence and alignment process of mesophase spheres were observed. Also the interlayer spacing of carbon hexagonal planar structure decreased, while its crystalline size increased. In addition, aromatic ring compound contents increased by the condensation polymerization of aliphatic compound. These results can be attributed to the radical reactivity of the fluorine increased as the reaction temperature increased. It was considered that the fluorination reaction could help PFO to generate aromatic compounds, via promoting polymerization by radical reaction.

키워드

참고문헌

  1. J. D. Brooks and G. H. Taylor, The formation of graphitizing carbons from the liquid phase, Carbon, 3, 185-186 (1965). https://doi.org/10.1016/0008-6223(65)90047-3
  2. J. D. Brooks and G. H. Taylor, The formation of some graphitizing carbons, In: P.L Walker (ed.), Chemistry and Physics of Carbon, Vol. 4, p. 243-286, Marcel Dekker, USA (1968).
  3. L. S. Singer, Process for producing high mesophase content pitch fibers, U. S. Patent, 3,919,387 (1975).
  4. R. J. Diefendorf and D. M. Riggs, Forming optically anisotropic pitches, U. S. Patent, 4,208,267 (1980).
  5. I. Mochida, E. I. Nakamura, K. Maeda, and K. Takeshida, Carbonization of aromatic hydrocarbon-III: Carbonization catalyzed by alkali metals, Carbon, 13, 489-493 (1975). https://doi.org/10.1016/0008-6223(75)90050-0
  6. M. Sakawa, T. Uno, and Y. Hara, Influence of aluminium chloride on carbonization of coal model compounds and coal derivatives, Fuel, 62, 571 (1983). https://doi.org/10.1016/0016-2361(83)90228-4
  7. I. Mochida, K. Shimizu, and Y. Korai, Preparation of mesophase pitch from aromatic hydrocarbons by the aid of $HF/BF_3$, Carbon, 28, 311-319 (1990). https://doi.org/10.1016/0008-6223(90)90005-J
  8. I. Mochida, K. Kudo, N. Fukkuda, K. Takeshita, and R. Takahashi, Carbonization of pitches-IV: Carbonization of polycyclic aromatic hydrocarbons under the presence of aluminum chloride catalyst, Carbon, 13, 135-139 (1975). https://doi.org/10.1016/0008-6223(75)90270-5
  9. I. Mochida, K. Shimizu, Y. Korai, Y. Sakai, S. Fujiyama, H. Toshima, and T. Hono, Mesophase pitch catalytically prepared from anthracene with $HF/BF_3$, Carbon, 30, 55-61 (1992). https://doi.org/10.1016/0008-6223(92)90106-7
  10. I. Mochida, K. Shimizu, and Y. Korai, Structure and carbonization properties of pitches produced catalytically from aromatic hydrocarbons with $HF/BF_3$, Carbon, 26, 843-852 (1988). https://doi.org/10.1016/0008-6223(88)90108-X
  11. Y. Korai, M. Nakamura, I. Mochida, Y. Sakai, and S. Fujiyama, Mesophase pitches prepared from methylnaphthalene by the aid of $HF/BF_3$, Carbon, 29, 561-567 (1991). https://doi.org/10.1016/0008-6223(91)90121-X
  12. M. J. Jung, J. W. Lim, I. J. Park, and Y. S. Lee, Fluorination of polymethylmethacrylate (PMMA) film and its surface characterization, Appl. Chem. Eng., 21, 317-322 (2010).
  13. B. K. Lee, J. S. Rho, and H. G. Kim, Surface treatment of polymers using direct fluorination, Polym. Sci. Technol., 13, 751-758 (2002).
  14. H. Touhara and F. Okino, Property control of carbon materials by fluorination, Carbon, 38, 241-267 (2000). https://doi.org/10.1016/S0008-6223(99)00140-2
  15. A. Tressaud, E. Durand, and C. Labrugere, Surface modification of several carbon-based materials: comparison between $CF_4$ rf plasma and direct $F_2$-gas fluorination routes, J. Fluor. Chem., 125, 1639-1648 (2004). https://doi.org/10.1016/j.jfluchem.2004.09.022
  16. Y. S. Lee and B. K. Lee, Surface properties of oxyfluorinated PAN-based carbon fibers, Carbon, 40, 2461-2468 (2002). https://doi.org/10.1016/S0008-6223(02)00152-5
  17. S. K. Ryu, S. J. In, J. Y. Kim, and B. S. Rhee, Mesophase pitch from hexane-insolunble coal tar pitch, Korean J. Chem. Eng., 27, 712-718 (1989).
  18. Y. Wang, Y. Korai, I. Mochida, K. Nagayama, H. Hatano, and N. Fukuda, Modification of synthetic mesophase pitch with iron oxide, $Fe_2O_3$, Carbon, 39, 1627-1634 (2011).
  19. M. I. Lomaev, V. S. Skakun, E. A. Sosnin, V. F. Tarasenko, D. V. Shitts, and M. V. Erofeev, Excilamps: efficient sources of spontaneous UV and VUV radiation, Phys. Usp., 46, 193-209 (2003). https://doi.org/10.1070/PU2003v046n02ABEH001308
  20. E. Mora, R. Santamaria, C. Blanco, M. Granda, and R. Menendez, Mesophase development in petroleum and coal-tar pitches and their blends, J. Anal. Appl. Pyrolysis, 68-69, 409-424 (2003). https://doi.org/10.1016/S0165-2370(03)00034-2
  21. A. H. Wazir and L. Kakakhel, Preparation and characterization of pitch-based carbon fibers, New Carbon Mater., 24, 83-88 (2009). https://doi.org/10.1016/S1872-5805(08)60039-6
  22. Y. Yamada, H. Honda, and T. Abe, Production of binder pitch from petroleum vacuum residue, J. Jpn. Pet. Inst., 18, 758-764 (1979).
  23. Y. Cheng, C. Fang, J. Su, R. Yu, and T. Li, Carbonization behavior and mesophase conversion kinetics of coal tar pitch using a low temperature molten salt method, J. Anal. Appl. Pyrolysis, 109, 90-97 (2014). https://doi.org/10.1016/j.jaap.2014.07.009
  24. S. Kumar and M. Srivastava, Catalyzing mesophase formation by transition metals, J. Anal. Appl. Pyrolysis, 112, 192-200 (2015). https://doi.org/10.1016/j.jaap.2015.01.029
  25. Z. S. Gui, W. B. Cheng, and S. Quan, Effect of physical disturbance on the structure of needle coke, Chin. Phys. B, 19, 108101 (2010). https://doi.org/10.1088/1674-1056/19/10/108101

피인용 문헌

  1. 열처리 온도에 따른 열분해 연료유 내 휘발유분 및 잔류 중질유분의 구조 분석 vol.30, pp.3, 2016, https://doi.org/10.14478/ace.2019.1010
  2. 산화 공정이 석유계 등방성 피치의 열거동 특성에 미치는 영향 vol.31, pp.1, 2016, https://doi.org/10.14478/ace.2019.1101