DOI QR코드

DOI QR Code

ZnO를 대체 가능한 새로운 Viologen 유도체가 적용된 역구조 고분자 태양전지

ZnO-free Inverted Polymer Solar Cells Based on New Viologen Derivative as a Cathode Buffer Layer

  • 김윤환 (부경대학교 고분자공학과) ;
  • 김동근 (부경대학교 고분자공학과) ;
  • 김주현 (부경대학교 고분자공학과)
  • Kim, Youn Hwan (Department of Polymer Engineering, Pukyong National University) ;
  • Kim, Dong Geun (Department of Polymer Engineering, Pukyong National University) ;
  • Kim, Joo Hyun (Department of Polymer Engineering, Pukyong National University)
  • 투고 : 2016.07.25
  • 심사 : 2016.08.25
  • 발행 : 2016.10.10

초록

새로운 viologen 유도체인 1,1'-bis(3,4-dihydroxybutyl)-[4,4'-bipyridine]-1,1'-diium bromide (V-Pr-2OH)을 합성하여 PTB7 : $PC_{71}BM$ Blend를 기반으로 하는 inverted polymer solar cells (iPSCs)에 cathode buffer layer로 적용하였다. V-Pr-2OH이 cathode buffer layer로 적용된 PSCs (ITO/V-Pr-2OH/PTB7 : $PC_{71}BM/MoO_3/Ag$)의 power conversion efficiency (PCE)는 7.28%이었다. V-Pr-2OH이 없는 iPSCs (ITO/ZnO/PTB7 : $PC_{71}BM/MoO_3/Ag$)의 PCE (7.41%)에 상응하는 값이다. 그러므로 본 연구에서는 높은 열처리 공정이 필요한 ZnO가 배제된, 즉 높은 온도의 열처리 없이도 제작 가능한 PSC에 대한 가능성을 보여주고 있다.

A new viologen derivative namely 1,1'-bis(3,4-dihydroxybutyl)-[4,4'-bipyridine]-1,1'-diium bromide (V-Pr-2OH) was synthesized and applied as a cathode buffer layer to inverted polymer solar cells (PSCs) based on the blend of PTB7 : $PC_{71}BM$. PSCs with the structure of ITO/V-Pr-2OH/PTB7 : $PC_{71}BM/MoO_3/Ag$ as the cathode buffer layer showed the power conversion efficiency (PCE) up to 7.28%, which is comparable to that of the PSCs with the structure of ITO/ZnO/PTB7 : $PC_{71}BM/MoO_3/Ag$ (7.44%) in the absence of V-Pr-2OH. This study demonstrates that a highly efficient PSCs without any high temperature heat treatment can be obtained.

키워드

참고문헌

  1. G. Yu, J .Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Polymer photo voltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science, 270, 1789-1791 (1995). https://doi.org/10.1126/science.270.5243.1789
  2. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Hybrid nanorod- polymer solar cells, Science, 295, 2425-2427 (2002). https://doi.org/10.1126/science.1069156
  3. S. Gunes, H. Neugebauer, and N. S. Sariciftci, Conjugated polymer- based organic solar cells, Chem. Rev., 107, 1324-1338 (2007). https://doi.org/10.1021/cr050149z
  4. L. Lu, T. Zheng, Q. Wu, A. M. Schneider, D. Zhao, and L. Yu, Recent advances in bulk hetero junction polymer solar cells, Chem. Rev., 115, 12666-12731 (2015). https://doi.org/10.1021/acs.chemrev.5b00098
  5. V. Vohra, K. Kawashima, T. Kakara, T. Koganezawa, I. Osaka, K. Takimiya, and H. Murata, Efficient inverted polymer solar cells employing favourable molecular orientation, Nat. Photonics, 9, 403-408 (2015). https://doi.org/10.1038/nphoton.2015.84
  6. B. Kan, M. Li, Q. Zhang, F. Liu, X. Wan, Y. Wang, W. Ni, G. Long, X. Yang, H. Feng, Y. Zuo, M. Zhang, F. Huang, Y. Cao, T. P. Russell, and Y. Chen, A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency, J. Am. Chem. Soc., 137, 3886-3893 (2015). https://doi.org/10.1021/jacs.5b00305
  7. Y. Liang, Z. Xu, J. B. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, For the bright future-bulk hetero junction polymer solar cells with power conversion efficiency of 7.4%, Adv. Mater., 22, E135-E138 (2010). https://doi.org/10.1002/adma.200903528
  8. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure, Nat. Photonics, 6, 591-595 (2012). https://doi.org/10.1038/nphoton.2012.190
  9. W. Ma, P. K. Iyer, X. Gong, B. Kiu, D. Moses, G. Bazan, and A. J. Heeger, Water/methanol-soluble conjugated copolymer as an electron-transport layer in polymer light-emitting diodes, Adv. Mater., 17, 274-277 (2005). https://doi.org/10.1002/adma.200400963
  10. M. Y. Jo, Y. E. Ha, and J. H. Kim, Polyviologen derivatives as an interfacial layer in polymer solar cells, Sol. Energy Mater. Sol. Cells., 107, 1-8 (2012). https://doi.org/10.1016/j.solmat.2012.08.003
  11. M. Y. Jo, Y. E. Ha, and J. H. Kim, Interfacial layer material derived from dialkylviologen and sol-gel chemistry for polymer solar cells, Org. Electron., 14, 995-1001 (2013). https://doi.org/10.1016/j.orgel.2013.01.022
  12. G. E. Lim, Y. E. Ha, M. Y. Jo, J. Park, Y. C. Kang, and J. H. Kim, Non-conjugated anionic polyelectrolyte as an interfacial layer for the organic optoelectronic devices, ACS Appl. Mater. Interfaces, 5, 6508-6513 (2013). https://doi.org/10.1021/am400478b
  13. H. Wang, W. Zhang, C, Xu, X. Bi, B. Chen, and S. Yang, Efficiency enhancement of polymer solar cells by applying poly(vinylpyrrolidone) as a cathode buffer layer via spin coating or self-assembly, ACS Appl. Mater. Interfaces, 5, 26-34 (2013). https://doi.org/10.1021/am302317v
  14. F. Zhang, M. Ceder, and O. Inganas, Enhancing the photovoltage of polymer solar cells by using a modified cathode, Adv. Mater., 19, 1835-1838 (2007). https://doi.org/10.1002/adma.200602597
  15. G. E. Lim, Y. E. Ha, M. Y. Jo, J. Park, Y. C. Kang, S. J. Moon, and H. J. Kim, Enhancing the efficiency of opto-electronic devices by the cathode modification. J. Mater. Chem. C, 2, 3820-3825 (2004).
  16. X. Liu, R. Xu, C. Duan, F. Huang, and Y. Cao, Non-conjugated water/alcohol soluble polymers with different oxidation states of sulfide as cathode interlayers for high-performance polymer solar cells, J. Mater. Chem. C, 4, 4288-4295 (2016).
  17. T. T. Do, H. S. Hong, Y. E. Ha, G. E. Lim, Y. S. Won, and J. H. Kim, Investigation of the effect of conjugated oligoelectrolyte as a cathode buffer layer on the photovoltaic properties, Synth. Met., 198, 122-130 (2014). https://doi.org/10.1016/j.synthmet.2014.10.006
  18. T. T. Do, H. S. Hong, Y. E. Ha. S. I. Yoo, Y. S. Won, M. J. Moon, and, J. H. Kim, Synthesis and characterization of conjugated oligoelectrolytes based on fluorene and carbazole derivative and application of polymer solar cell as a cathode buffer layer, Macromol. Res., 23, 367-376 (2015). https://doi.org/10.1007/s13233-015-3042-0
  19. C. Min, C. Shi, W. Zhang, T. Jiu, J. Chen, D. Ma, and J. Fang, A small-molecule zwitterionic electrolyte without a ${\pi}$-delocalized unit as a charge-injection layer for high-performance PLEDs, Angew. Chem. Int. Ed., 52, 3417-3420 (2013). https://doi.org/10.1002/anie.201209959
  20. Z. Liu, X. Ouyang, R. Peng, Y. Bai, D. Mi, W. Jiang, A. Facchetti, and Z. Ge, Efficient polymer solar cells based on the synergy effect of a novel non-conjugated small-molecule electrolyte and polar solvent, J. Mater. Chem. A, 4, 2530-2536 (2016). https://doi.org/10.1039/C5TA10083F
  21. X. Li, W. Zhang, X. Wang, Y. Wu, F. Gao, and J. Fang, Critical role of the external bias in improving the performance of polymer solar cells with a small molecule electrolyte interlayer, J. Mater. Chem. A, 3, 504-508 (2015). https://doi.org/10.1039/C4TA05516K
  22. J. H. Seo, A. Gutacker, Y. M. Sun, H. B. Wu, F. Huang, Y. Cao, U. Scherf, A. J. Heeger, and G. C. Bazan, Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte inter-layer, J. Am. Chem. Soc., 133, 8416-8419 (2011). https://doi.org/10.1021/ja2037673
  23. S. Nam, J. Jang, H. Cha, J. Hwang, T. K. An, S. Park, and C. E. Park, Effects of direct solvent exposure on the nanoscale morphologies and electrical characteristics of PCBM-based transistors and photovoltaics, J. Mater. Chem., 22, 5543-5549 (2012). https://doi.org/10.1039/c2jm15260f
  24. H. Q. Zhou, Y. Zhang, J. Seifter, S. D. Collins, C. Luo, G. C. Bazan, T. -Q. Nguyen, and A. J. Heeger, High-efficiency polymer solar cells enhanced by solvent treatment, Adv. Mater., 25, 1646-1652 (2013). https://doi.org/10.1002/adma.201204306
  25. Z. -K. Tan, Y. Vaynzof, D. Credgington, C. Li, M. T. L. Casford, A. Sepe, S. Huettner, M. Nikolka, F. Paulus, L. Yang, H. Sirringhaus, N. C. Greenham, and F. H. Friend, In-situ switching from barrier- limited to ohmic anodes for efficient organic optoelectronics, Adv. Funct. Mater., 24, 3051-3058 (2014). https://doi.org/10.1002/adfm.201303426
  26. Y. Wang, Y. Liu, S. Chen, R. Peng, and Z. Ge, Significant enhancement of polymer solar cell performance via side-chain engineering and simple solvent treatment, Chem. Mater., 25, 3196-3204 (2013). https://doi.org/10.1021/cm401618h
  27. A. Bagui and S. S. K. Iyer, Increase in hole mobility in poly (3-hexyl thiophene-2,5-diyl) films annealed under electric field during the solvent drying step, Org. Electron., 15, 1387-1395 (2014). https://doi.org/10.1016/j.orgel.2014.03.042
  28. V. D. Mihailetchi, J. K. van Duren, P. W. Blom, J. C. Hummelen, R. A. Janssen, J. M. Kroon, M. T. Rispens, W. J. H. Verhees, and M. M. Wienk, Electron transport in a methano fullerene, Adv. Funct. Mater., 13, 43-46 (2003). https://doi.org/10.1002/adfm.200390004

피인용 문헌

  1. Simple Approach to Overcome Thickness Tolerance of Interlayer without Sacrificing the Performances of Polymer Solar Cells vol.6, pp.18, 2016, https://doi.org/10.1002/admi.201900797
  2. Small-molecule electrolytes with different ionic functionalities as a cathode buffer layer for polymer solar cells vol.8, pp.43, 2016, https://doi.org/10.1039/d0tc02513e