• 제목/요약/키워드: inverted polymer solar cell

검색결과 4건 처리시간 0.022초

High performance of inverted polymer solar cells

  • Lee, Hsin-Ying;Lee, Ching-Ting;Huang, Hung-Lin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.61.2-61.2
    • /
    • 2015
  • In the past decades, green energy, such as solar energy, wind power, hydropower, biomass energy, geothermal energy, and so on, has been widely investigated and developed to solve energy shortage. Recently, organic solar cells have attracted much attention, because they have many advantages, including low-cost, flexibility, light weight, and easy fabrication [1-3]. Organic solar cells are as a potential candidate of the next generation solar cells. In this abstract, to improve the power conversion efficiency and the stability, the inverted polymer solar cells with various structures were developed [4-6]. The novel cell structures included the P3HT:PCBM inverted polymer solar cells with AZO nanorods array, with pentacene-doped active layer, and with extra P3HT interfacial layer and PCBM interfacial layer. These three difference structures could respectively improve the performance of the P3HT:PCBM inverted polymer solar cells. For the inverted polymer solar cells with AZO nanorods array as the electronic transportation layer, by using the nanorod structure, the improvement of carrier collection and carrier extraction capabilities could be expected due to an increase in contact area between the nanorod array and the active layer. For the inverted polymer solar cells with pentacene-doped active layer, the hole-electron mobility in the active layer could be balanced by doping pentacene contents. The active layer with the balanced hole-electron mobility could reduce the carrier recombination in the active layers to enhance the photocurrent of the resulting inverted polymer solar cells. For the inverted polymer solar cells with extra P3HT and PCBM interfacial layers, the extra PCBM and P3HT interfacial layers could respectively improve the electron transport and hole transport. The extra PCBM interfacial layer served another function was that led more P3HT moving to the top side of the absorption layer, which reduced the non-continuous pathways of P3HT. It indicated that the recombination centers could be further reduced in the absorption layer. The extra P3HT interfacial layer could let the hole be more easily transported to the MoO3 hole transport layer. The high performance of the novel P3HT:PCBM inverted polymer solar cells with various structures were obtained.

  • PDF

ZnO를 대체 가능한 새로운 Viologen 유도체가 적용된 역구조 고분자 태양전지 (ZnO-free Inverted Polymer Solar Cells Based on New Viologen Derivative as a Cathode Buffer Layer)

  • 김윤환;김동근;김주현
    • 공업화학
    • /
    • 제27권5호
    • /
    • pp.512-515
    • /
    • 2016
  • 새로운 viologen 유도체인 1,1'-bis(3,4-dihydroxybutyl)-[4,4'-bipyridine]-1,1'-diium bromide (V-Pr-2OH)을 합성하여 PTB7 : $PC_{71}BM$ Blend를 기반으로 하는 inverted polymer solar cells (iPSCs)에 cathode buffer layer로 적용하였다. V-Pr-2OH이 cathode buffer layer로 적용된 PSCs (ITO/V-Pr-2OH/PTB7 : $PC_{71}BM/MoO_3/Ag$)의 power conversion efficiency (PCE)는 7.28%이었다. V-Pr-2OH이 없는 iPSCs (ITO/ZnO/PTB7 : $PC_{71}BM/MoO_3/Ag$)의 PCE (7.41%)에 상응하는 값이다. 그러므로 본 연구에서는 높은 열처리 공정이 필요한 ZnO가 배제된, 즉 높은 온도의 열처리 없이도 제작 가능한 PSC에 대한 가능성을 보여주고 있다.

다양한 박막 형성법을 사용한 ZnO 전자 추출층이 역구조 고분자 태양전지에 미치는 영향 연구 (Investigation of the Effects of ZnO Thin Film Deposition Methods on Inverted Polymer Solar Cells)

  • 이동구;노승욱;성명모;이창희
    • Current Photovoltaic Research
    • /
    • 제1권1호
    • /
    • pp.59-62
    • /
    • 2013
  • We investigated the effects of ZnO thin film deposition methods on the performance of inverted polymer solar cells with a structure of ITO/ZnO/P3HT:PCBM/MoO3/Al. The ZnO thin films were deposited by various methods (spin coating of nanoparticles, sol-gel process, atomic layer deposition) and their morphology was analyzed by atomic force microscopy (AFM). The device with ZnO nanoparticle thin films showed the highest power conversion efficiency of 3 % with low series resistance and high shunt resistance. The superior performance of the device with the ZnO nanoparticle layer is attributed to better electron extraction capability.

A Brief Investigation on the Performance Variation and Shelf Lifetime in Polymer:Nonfullerene Solar Cells

  • Lee, Sooyong;Kim, Hwajeong;Lee, Chulyeon;Kim, Youngkyoo
    • Current Photovoltaic Research
    • /
    • 제7권3호
    • /
    • pp.55-60
    • /
    • 2019
  • Polymer:nonfullerene solar cells with an inverted-type device structure were fabricated by employing the bulk heterojunction (BHJ) active layers, which are composed of poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophene-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) and 3,9-bis(6-methyl-2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3-d']-s-indaceno[1,2-b:5,6-b']dithiophene (IT-M). The BHJ layers were formed on a pre-patterned indium-tin oxide (ITO)-coated glass substrate by spin-coating using the blend solutions of PBDB-T and IT-M. The solar cell performances were investigated with respect to the cell position on the ITO-glass substrates. In addition, the short-term shelf lifetime of solar cells was tested by storing the PBDB-T:IT-M solar cells in a glovebox filled with inert gas. The results showed that the performance of solar cells was relatively higher for the cells close to the center of substrates, which was maintained even after storage for 24 h. In particular, the PCE of PBDB-T:IT-M solar cells was marginally decreased after storage for 24 h owing to the slightly reduced fill factor, even though the open circuit voltage was unchanged after 24 h.