DOI QR코드

DOI QR Code

Dielectric and Electrocaloric Characteristics of PLZT(8/65/35) Ceramics as a Function of Sintering Temperature

PLZT(8/65/35) 세라믹스의 소결온도에 따른 유전 및 전기열량 특성

  • Kim, You-Seok (Department of Electrical Engineering, Semyung University) ;
  • Han, Jong-Dae (Department of Electrical Engineering, Semyung University) ;
  • Yoo, Ju-Hyun (Department of Electrical Engineering, Semyung University) ;
  • Jeong, Yeong-Ho (Department of Electrical Engineering, Korea National University of Transportation)
  • Received : 2016.06.15
  • Accepted : 2016.09.22
  • Published : 2016.10.01

Abstract

In this study, in order to develop relaxor ferroelectric ceramics for refrigeration device application with large electrocaloric effect and low sintering temperature, PLZT(8/65/35) ceramics was fabricated using conventional solid-state method with the variation of sintering temperature ($1,050^{\circ}C$, $1,100^{\circ}C$, $1,200^{\circ}C$). The XRD pattern of all specimens indicated general perovskite structure with secondary phase. From the results of temperature dependence of dielectric constant, the $T_C$ (ferroelectric-paraelectric phase transition temperature) was shifted toward high temperature with increasing sintering temperature. When the specimen was sintered at $1,100^{\circ}C$, the optimal value of ${\Delta}T{\sim}0.349^{\circ}C$ in ambient temperature of $215^{\circ}C$ was appeared. It is considered that PLZT(8/65/35) ceramics possess the possibility of refrigeration device application.

Keywords

References

  1. J. Wang, T. Yang, S. Chen, G. Li, Q. Zhang, and X. Yao, J. Alloys. Compd., 550, 561-563 (2013). [DOI: http://dx.doi.org/10.1016/j.jallcom.2012.10.144]
  2. X. C. Zheng, G. P. Zheng, Z. Lin, and Z. Y. Jiang, J. Electroceram., 28, 20-26 (2012). [DOI: http://dx.doi.org/10.1007/s10832-011-9673-4]
  3. M. Ozbolt, A. Kitanovski, J. Tusek, and A. Poredos, International Journal of Refrigeration, 40, 174-188 (2014). [DOI: http://dx.doi.org/10.1016/j.ijrefrig.2013.11.007]
  4. D. Q. Xiao, Y. C. Wang, R. L. Zhang, S. Q. Peng, J. G. Zhu, and B. Yang, Mater. Chem. Phys., 57, 182-185 (1998). [DOI: http://dx.doi.org/10.1016/S0254-0584(98)00204-1]
  5. A. S. Mischenko, Q. Zhang, J. F. Scott, R. W Whatmore, and N. D. Mathur, Science, 311, 1270-1271 (2006). [DOI: http://dx.doi.org/10.1126/science.1123811]
  6. Y. Bai, G. P. Zheng, K. Ding, L. Qiao, S. Q. Shi, and D. Guo, J. Appl. Phys., 110, 094103 (2011). [DOI: http://dx.doi.org/10.1063/1.3658251]
  7. M. Valant, Prog. Mater. Sci., 57, 980-1009 (2012). [DOI: http://dx.doi.org/10.1016/j.pmatsci.2012.02.001]
  8. S. H. Choi, C. M. Ra, and J. H. Yoo, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 615-619 (2015). [DOI: http://dx.doi.org/10.4313/jkem.2015.28.10.615]